Loading…

Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics

•An alternative approach to thermophotovoltaics (TPV) is presented.•The thermionic output power density can significantly exceed that of TPV.•The thermionic conversion efficiency can be superior to that of TPV.•The thermionic output voltage can exceed the TPV material’s band gap.•Thermionic device c...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2023-04, Vol.224, p.119993, Article 119993
Main Authors: Rahman, Ehsanur, Nojeh, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43
cites cdi_FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43
container_end_page
container_issue
container_start_page 119993
container_title Applied thermal engineering
container_volume 224
creator Rahman, Ehsanur
Nojeh, Alireza
description •An alternative approach to thermophotovoltaics (TPV) is presented.•The thermionic output power density can significantly exceed that of TPV.•The thermionic conversion efficiency can be superior to that of TPV.•The thermionic output voltage can exceed the TPV material’s band gap.•Thermionic device can benefit from photon-coupling instead of direct thermal contact. This work investigates an alternative to thermophotovoltaics for harvesting thermal and optical energy via photon coupling and thermionic energy conversion. In this device, a heat source is radiatively coupled to a thermionic electron emitter through a nanoscale gap and the electron emitter is coupled to the collector through a microscale gap. The analysis using fluctuational electrodynamics and finite-time thermodynamics shows that for identical thermal radiator and photon-to-electron conversion materials, the output power density in the thermionic device can be more than twice that of the thermophotovoltaic device; the thermionic mechanism can also provide more than 30% improvement in the energy conversion efficiency compared to the thermophotovoltaic device. Moreover, the maximum-power-point voltage in the thermionic device is shown to significantly exceed the conversion material’s band gap, which determines the theoretical upper limit of the open-circuit voltage in a thermophotovoltaic cell. Therefore, the results of this study indicate that thermionic energy harvesting via thermo-photon coupling can be a promising alternative to thermophotovoltaics.
doi_str_mv 10.1016/j.applthermaleng.2023.119993
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_applthermaleng_2023_119993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431123000224</els_id><sourcerecordid>S1359431123000224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhT2ARCn8Bw-sCX4lwYilqiggFbHAbN04TuMqtSPbCmLnh5M-lm5MV1c63zn3HoTuKMkpoeX9Nodh6FNnwg564zY5I4znlEop-QWaUV7ITHBKr9B1jFtCKHuoxAz9vlsdfLaBAR9Ynw2dTz47LNY7q-MjXjgMfTLBQbKjwVNQ8KA7nDzuIIwmJus2Z7yLGFyDbYpY-90AwUbv8LdN3Ul2UI2-TzAl3KDLFvpobk9zjr5Wz5_L12z98fK2XKwzzUqSskKWhtWNMLSBiom6lZzJsgVR10Wh2xLKSgggmgDnUPOKcanLqm14W7JaNILP0dPRd3o5xmBaNQS7g_CjKFH7FtVWnbeo9i2qY4sTvjriZrpxtCaoqK1x2jQ2GJ1U4-3_jP4AQgKLiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics</title><source>ScienceDirect Freedom Collection</source><creator>Rahman, Ehsanur ; Nojeh, Alireza</creator><creatorcontrib>Rahman, Ehsanur ; Nojeh, Alireza</creatorcontrib><description>•An alternative approach to thermophotovoltaics (TPV) is presented.•The thermionic output power density can significantly exceed that of TPV.•The thermionic conversion efficiency can be superior to that of TPV.•The thermionic output voltage can exceed the TPV material’s band gap.•Thermionic device can benefit from photon-coupling instead of direct thermal contact. This work investigates an alternative to thermophotovoltaics for harvesting thermal and optical energy via photon coupling and thermionic energy conversion. In this device, a heat source is radiatively coupled to a thermionic electron emitter through a nanoscale gap and the electron emitter is coupled to the collector through a microscale gap. The analysis using fluctuational electrodynamics and finite-time thermodynamics shows that for identical thermal radiator and photon-to-electron conversion materials, the output power density in the thermionic device can be more than twice that of the thermophotovoltaic device; the thermionic mechanism can also provide more than 30% improvement in the energy conversion efficiency compared to the thermophotovoltaic device. Moreover, the maximum-power-point voltage in the thermionic device is shown to significantly exceed the conversion material’s band gap, which determines the theoretical upper limit of the open-circuit voltage in a thermophotovoltaic cell. Therefore, the results of this study indicate that thermionic energy harvesting via thermo-photon coupling can be a promising alternative to thermophotovoltaics.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2023.119993</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Nano-scale energy conversion ; Photon tunneling ; Thermionics ; Thermo-photons ; Thermophotovoltaics</subject><ispartof>Applied thermal engineering, 2023-04, Vol.224, p.119993, Article 119993</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43</citedby><cites>FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43</cites><orcidid>0000-0001-8683-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rahman, Ehsanur</creatorcontrib><creatorcontrib>Nojeh, Alireza</creatorcontrib><title>Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics</title><title>Applied thermal engineering</title><description>•An alternative approach to thermophotovoltaics (TPV) is presented.•The thermionic output power density can significantly exceed that of TPV.•The thermionic conversion efficiency can be superior to that of TPV.•The thermionic output voltage can exceed the TPV material’s band gap.•Thermionic device can benefit from photon-coupling instead of direct thermal contact. This work investigates an alternative to thermophotovoltaics for harvesting thermal and optical energy via photon coupling and thermionic energy conversion. In this device, a heat source is radiatively coupled to a thermionic electron emitter through a nanoscale gap and the electron emitter is coupled to the collector through a microscale gap. The analysis using fluctuational electrodynamics and finite-time thermodynamics shows that for identical thermal radiator and photon-to-electron conversion materials, the output power density in the thermionic device can be more than twice that of the thermophotovoltaic device; the thermionic mechanism can also provide more than 30% improvement in the energy conversion efficiency compared to the thermophotovoltaic device. Moreover, the maximum-power-point voltage in the thermionic device is shown to significantly exceed the conversion material’s band gap, which determines the theoretical upper limit of the open-circuit voltage in a thermophotovoltaic cell. Therefore, the results of this study indicate that thermionic energy harvesting via thermo-photon coupling can be a promising alternative to thermophotovoltaics.</description><subject>Nano-scale energy conversion</subject><subject>Photon tunneling</subject><subject>Thermionics</subject><subject>Thermo-photons</subject><subject>Thermophotovoltaics</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhT2ARCn8Bw-sCX4lwYilqiggFbHAbN04TuMqtSPbCmLnh5M-lm5MV1c63zn3HoTuKMkpoeX9Nodh6FNnwg564zY5I4znlEop-QWaUV7ITHBKr9B1jFtCKHuoxAz9vlsdfLaBAR9Ynw2dTz47LNY7q-MjXjgMfTLBQbKjwVNQ8KA7nDzuIIwmJus2Z7yLGFyDbYpY-90AwUbv8LdN3Ul2UI2-TzAl3KDLFvpobk9zjr5Wz5_L12z98fK2XKwzzUqSskKWhtWNMLSBiom6lZzJsgVR10Wh2xLKSgggmgDnUPOKcanLqm14W7JaNILP0dPRd3o5xmBaNQS7g_CjKFH7FtVWnbeo9i2qY4sTvjriZrpxtCaoqK1x2jQ2GJ1U4-3_jP4AQgKLiA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Rahman, Ehsanur</creator><creator>Nojeh, Alireza</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8683-1195</orcidid></search><sort><creationdate>202304</creationdate><title>Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics</title><author>Rahman, Ehsanur ; Nojeh, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Nano-scale energy conversion</topic><topic>Photon tunneling</topic><topic>Thermionics</topic><topic>Thermo-photons</topic><topic>Thermophotovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Ehsanur</creatorcontrib><creatorcontrib>Nojeh, Alireza</creatorcontrib><collection>CrossRef</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Ehsanur</au><au>Nojeh, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics</atitle><jtitle>Applied thermal engineering</jtitle><date>2023-04</date><risdate>2023</risdate><volume>224</volume><spage>119993</spage><pages>119993-</pages><artnum>119993</artnum><issn>1359-4311</issn><abstract>•An alternative approach to thermophotovoltaics (TPV) is presented.•The thermionic output power density can significantly exceed that of TPV.•The thermionic conversion efficiency can be superior to that of TPV.•The thermionic output voltage can exceed the TPV material’s band gap.•Thermionic device can benefit from photon-coupling instead of direct thermal contact. This work investigates an alternative to thermophotovoltaics for harvesting thermal and optical energy via photon coupling and thermionic energy conversion. In this device, a heat source is radiatively coupled to a thermionic electron emitter through a nanoscale gap and the electron emitter is coupled to the collector through a microscale gap. The analysis using fluctuational electrodynamics and finite-time thermodynamics shows that for identical thermal radiator and photon-to-electron conversion materials, the output power density in the thermionic device can be more than twice that of the thermophotovoltaic device; the thermionic mechanism can also provide more than 30% improvement in the energy conversion efficiency compared to the thermophotovoltaic device. Moreover, the maximum-power-point voltage in the thermionic device is shown to significantly exceed the conversion material’s band gap, which determines the theoretical upper limit of the open-circuit voltage in a thermophotovoltaic cell. Therefore, the results of this study indicate that thermionic energy harvesting via thermo-photon coupling can be a promising alternative to thermophotovoltaics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2023.119993</doi><orcidid>https://orcid.org/0000-0001-8683-1195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2023-04, Vol.224, p.119993, Article 119993
issn 1359-4311
language eng
recordid cdi_crossref_primary_10_1016_j_applthermaleng_2023_119993
source ScienceDirect Freedom Collection
subjects Nano-scale energy conversion
Photon tunneling
Thermionics
Thermo-photons
Thermophotovoltaics
title Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-gap%20thermo-photo-thermionics:%20An%20alternative%20approach%20to%20harvesting%20thermo-photons%20and%20its%20comparison%20with%20thermophotovoltaics&rft.jtitle=Applied%20thermal%20engineering&rft.au=Rahman,%20Ehsanur&rft.date=2023-04&rft.volume=224&rft.spage=119993&rft.pages=119993-&rft.artnum=119993&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2023.119993&rft_dat=%3Celsevier_cross%3ES1359431123000224%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-596e2bd4e1da724bf93296fa4bb55cf6a6744a0c0a33ab37239c67fd3f62b4d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true