Loading…

Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization

•We propose a novel method to control thermal distribution during SAW atomization.•It includes pulse signal modulation and hydrophilic treatment of substrates.•The highest temperature drops approximately 50℃ during SAW atomization.•The method raises the particle diameters of atomization lightly. Owi...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2023-06, Vol.228, p.120377, Article 120377
Main Authors: Gai, Chenhui, Hu, Hong, Han, Junlong, Lei, Yulin, Ning, Jia, Ye, Diyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173
cites cdi_FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173
container_end_page
container_issue
container_start_page 120377
container_title Applied thermal engineering
container_volume 228
creator Gai, Chenhui
Hu, Hong
Han, Junlong
Lei, Yulin
Ning, Jia
Ye, Diyi
description •We propose a novel method to control thermal distribution during SAW atomization.•It includes pulse signal modulation and hydrophilic treatment of substrates.•The highest temperature drops approximately 50℃ during SAW atomization.•The method raises the particle diameters of atomization lightly. Owing to the temperature limitations of biochemical or biomedical atomization applications, temperature control within a surface acoustic wave (SAW) atomizer is critical. This paper presents a method for controlling the thermal distribution of SAW atomization. This method combines pulse signal modulation and hydrophilic treatment of an SAW substrate. By setting the duty factor to 50 % and contact angle to 30°, the temperature reduces to about 99.3 °C for water and approximately 68.4 °C for a 50 wt% alcohol/water binary mixture during SAW atomization. Therefore, the proposed method effectively controls the thermal distribution during SAW-based atomization. In addition, the particle diameters of the different liquids used for SAW atomization are explored using this method. The results reveal that the general method increases the particle diameters of tiny droplets from 5 μm to 10 μm. Notably, this is within an acceptable range, hence the method has lower effects on the atomization particle diameter.
doi_str_mv 10.1016/j.applthermaleng.2023.120377
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_applthermaleng_2023_120377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431123004064</els_id><sourcerecordid>S1359431123004064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhj2ARCm8gwfWBF9ylVhQRQGpEgvM1onttK4SO7KdovIuvCtpw8LGZB35fP_59SF0R0lKCS3u9ykMQxd32vfQabtNGWE8pYzwsrxAC8rzOsk4pVfoOoQ9IZRVZbZA3yvXN8ZCNM5i1-Jh7ILGwWwtdLh3auzmL7AK747Ku2FnOiNx9Bpir208QYDD2IToIWrcOo-ls9G7rjN2i6dG-LcVVmZaMs14TjR2onwLUmOQbgxxSv2EwzRF15uv89kbdNnCVOj2912ij_XT--ol2bw9v64eN4nknMSE0UyWNeRQFaymimeVgpzmXBKoa1JyWbA208BKVWZNTjJetVXBJc1zxVhOS75ED3Ou9C4Er1sxeNODPwpKxEmv2Iu_esVJr5j1Tvh6xvXU8WC0F0EabaVWxmsZhXLmf0E_0BWTBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization</title><source>ScienceDirect Journals</source><creator>Gai, Chenhui ; Hu, Hong ; Han, Junlong ; Lei, Yulin ; Ning, Jia ; Ye, Diyi</creator><creatorcontrib>Gai, Chenhui ; Hu, Hong ; Han, Junlong ; Lei, Yulin ; Ning, Jia ; Ye, Diyi</creatorcontrib><description>•We propose a novel method to control thermal distribution during SAW atomization.•It includes pulse signal modulation and hydrophilic treatment of substrates.•The highest temperature drops approximately 50℃ during SAW atomization.•The method raises the particle diameters of atomization lightly. Owing to the temperature limitations of biochemical or biomedical atomization applications, temperature control within a surface acoustic wave (SAW) atomizer is critical. This paper presents a method for controlling the thermal distribution of SAW atomization. This method combines pulse signal modulation and hydrophilic treatment of an SAW substrate. By setting the duty factor to 50 % and contact angle to 30°, the temperature reduces to about 99.3 °C for water and approximately 68.4 °C for a 50 wt% alcohol/water binary mixture during SAW atomization. Therefore, the proposed method effectively controls the thermal distribution during SAW-based atomization. In addition, the particle diameters of the different liquids used for SAW atomization are explored using this method. The results reveal that the general method increases the particle diameters of tiny droplets from 5 μm to 10 μm. Notably, this is within an acceptable range, hence the method has lower effects on the atomization particle diameter.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2023.120377</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Atomization ; Pulse signal modulation ; Surface acoustic wave ; Thermal distribution ; Wettability of substrate</subject><ispartof>Applied thermal engineering, 2023-06, Vol.228, p.120377, Article 120377</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173</citedby><cites>FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gai, Chenhui</creatorcontrib><creatorcontrib>Hu, Hong</creatorcontrib><creatorcontrib>Han, Junlong</creatorcontrib><creatorcontrib>Lei, Yulin</creatorcontrib><creatorcontrib>Ning, Jia</creatorcontrib><creatorcontrib>Ye, Diyi</creatorcontrib><title>Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization</title><title>Applied thermal engineering</title><description>•We propose a novel method to control thermal distribution during SAW atomization.•It includes pulse signal modulation and hydrophilic treatment of substrates.•The highest temperature drops approximately 50℃ during SAW atomization.•The method raises the particle diameters of atomization lightly. Owing to the temperature limitations of biochemical or biomedical atomization applications, temperature control within a surface acoustic wave (SAW) atomizer is critical. This paper presents a method for controlling the thermal distribution of SAW atomization. This method combines pulse signal modulation and hydrophilic treatment of an SAW substrate. By setting the duty factor to 50 % and contact angle to 30°, the temperature reduces to about 99.3 °C for water and approximately 68.4 °C for a 50 wt% alcohol/water binary mixture during SAW atomization. Therefore, the proposed method effectively controls the thermal distribution during SAW-based atomization. In addition, the particle diameters of the different liquids used for SAW atomization are explored using this method. The results reveal that the general method increases the particle diameters of tiny droplets from 5 μm to 10 μm. Notably, this is within an acceptable range, hence the method has lower effects on the atomization particle diameter.</description><subject>Atomization</subject><subject>Pulse signal modulation</subject><subject>Surface acoustic wave</subject><subject>Thermal distribution</subject><subject>Wettability of substrate</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhj2ARCm8gwfWBF9ylVhQRQGpEgvM1onttK4SO7KdovIuvCtpw8LGZB35fP_59SF0R0lKCS3u9ykMQxd32vfQabtNGWE8pYzwsrxAC8rzOsk4pVfoOoQ9IZRVZbZA3yvXN8ZCNM5i1-Jh7ILGwWwtdLh3auzmL7AK747Ku2FnOiNx9Bpir208QYDD2IToIWrcOo-ls9G7rjN2i6dG-LcVVmZaMs14TjR2onwLUmOQbgxxSv2EwzRF15uv89kbdNnCVOj2912ij_XT--ol2bw9v64eN4nknMSE0UyWNeRQFaymimeVgpzmXBKoa1JyWbA208BKVWZNTjJetVXBJc1zxVhOS75ED3Ou9C4Er1sxeNODPwpKxEmv2Iu_esVJr5j1Tvh6xvXU8WC0F0EabaVWxmsZhXLmf0E_0BWTBw</recordid><startdate>20230625</startdate><enddate>20230625</enddate><creator>Gai, Chenhui</creator><creator>Hu, Hong</creator><creator>Han, Junlong</creator><creator>Lei, Yulin</creator><creator>Ning, Jia</creator><creator>Ye, Diyi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230625</creationdate><title>Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization</title><author>Gai, Chenhui ; Hu, Hong ; Han, Junlong ; Lei, Yulin ; Ning, Jia ; Ye, Diyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomization</topic><topic>Pulse signal modulation</topic><topic>Surface acoustic wave</topic><topic>Thermal distribution</topic><topic>Wettability of substrate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, Chenhui</creatorcontrib><creatorcontrib>Hu, Hong</creatorcontrib><creatorcontrib>Han, Junlong</creatorcontrib><creatorcontrib>Lei, Yulin</creatorcontrib><creatorcontrib>Ning, Jia</creatorcontrib><creatorcontrib>Ye, Diyi</creatorcontrib><collection>CrossRef</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gai, Chenhui</au><au>Hu, Hong</au><au>Han, Junlong</au><au>Lei, Yulin</au><au>Ning, Jia</au><au>Ye, Diyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization</atitle><jtitle>Applied thermal engineering</jtitle><date>2023-06-25</date><risdate>2023</risdate><volume>228</volume><spage>120377</spage><pages>120377-</pages><artnum>120377</artnum><issn>1359-4311</issn><abstract>•We propose a novel method to control thermal distribution during SAW atomization.•It includes pulse signal modulation and hydrophilic treatment of substrates.•The highest temperature drops approximately 50℃ during SAW atomization.•The method raises the particle diameters of atomization lightly. Owing to the temperature limitations of biochemical or biomedical atomization applications, temperature control within a surface acoustic wave (SAW) atomizer is critical. This paper presents a method for controlling the thermal distribution of SAW atomization. This method combines pulse signal modulation and hydrophilic treatment of an SAW substrate. By setting the duty factor to 50 % and contact angle to 30°, the temperature reduces to about 99.3 °C for water and approximately 68.4 °C for a 50 wt% alcohol/water binary mixture during SAW atomization. Therefore, the proposed method effectively controls the thermal distribution during SAW-based atomization. In addition, the particle diameters of the different liquids used for SAW atomization are explored using this method. The results reveal that the general method increases the particle diameters of tiny droplets from 5 μm to 10 μm. Notably, this is within an acceptable range, hence the method has lower effects on the atomization particle diameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2023.120377</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2023-06, Vol.228, p.120377, Article 120377
issn 1359-4311
language eng
recordid cdi_crossref_primary_10_1016_j_applthermaleng_2023_120377
source ScienceDirect Journals
subjects Atomization
Pulse signal modulation
Surface acoustic wave
Thermal distribution
Wettability of substrate
title Combination of pulse signal modulation and hydrophilic treatment of a substrate for controlling the thermal distribution in surface acoustic wave atomization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20pulse%20signal%20modulation%20and%20hydrophilic%20treatment%20of%20a%20substrate%20for%20controlling%20the%20thermal%20distribution%20in%20surface%20acoustic%20wave%20atomization&rft.jtitle=Applied%20thermal%20engineering&rft.au=Gai,%20Chenhui&rft.date=2023-06-25&rft.volume=228&rft.spage=120377&rft.pages=120377-&rft.artnum=120377&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2023.120377&rft_dat=%3Celsevier_cross%3ES1359431123004064%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-214c79a5a86291d348da5153c0a99073c62f4ea27d74b50438f863c155d225173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true