Loading…
Source apportionment of trace elements and black carbon in an urban industrial area (Portland, Oregon)
This paper reports a current source apportionment study of trace elements and black carbon in particulate matter in industrial Southeast Portland, Oregon. The study aimed to determine whether metal pollution hotspots identified in the area in 2016 had been successfully mitigated by baghouse installa...
Saved in:
Published in: | Atmospheric pollution research 2019-05, Vol.10 (3), p.784-794 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports a current source apportionment study of trace elements and black carbon in particulate matter in industrial Southeast Portland, Oregon. The study aimed to determine whether metal pollution hotspots identified in the area in 2016 had been successfully mitigated by baghouse installation, or whether industrial sources continued to dominate local particulate matter. Particulate matter was filter-collected nearly continuously in 24-hour intervals between October 2017 and March 2018 (101 total filters). Filters were analyzed for 30 elements by x-ray fluorescence; black carbon was measured continuously during filter sampling using an aethalometer. EPA's Positive Matrix Factorization 5.0 was used for source apportionment modeling, yielding a 5-factor optimal solution. The source identities were resolved to be diesel and fuel emissions, sea salt, soil dust, secondary sulfates, and metals industry. The metals industry source was much less significant than expected, suggesting effective emissions reductions from the local factory. The source profiles' correlation with wind direction and speed using bivariate polar plots was examined to give further insight into the source identities and their locations. The NOAA HYSPLIT model was also used for air flow back-trajectory analysis. The results of the HYSPLIT and bivariate polar plots suggest that the coal power plant in eastern Oregon is a significant source of sulfates and mercury emissions. Using PMF on particulate matter data from a second industrial location in Southeast Portland (98 filters) revealed the same major sources except for the metals industry source, supporting the conclusion that regional sources dominate particulate matter metals composition, despite measurements made in an industrial urban location.
•Sources of elements and black carbon were studied in Portland, OR for 2017–2018.•Particulate matter in industrial Portland, OR is dominated by regional sources.•Source apportionment of elemental composition reveals coal plant source.•Black carbon measurements enable identification of diesel source. |
---|---|
ISSN: | 1309-1042 1309-1042 |
DOI: | 10.1016/j.apr.2018.12.006 |