Loading…
Langmuir–Blodgett and Langmuir–Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors
Double- and triple-decker phthalocyanine derivatives have been successfully used as the sensitive materials for liquid electrochemical sensors. The materials include homoleptic and heteroleptic phthalocyanine complexes formed by phthalocyanine, porphyrin and naphthalocyanine rings. A high degree of...
Saved in:
Published in: | Applied surface science 2005-06, Vol.246 (4), p.304-312 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Double- and triple-decker phthalocyanine derivatives have been successfully used as the sensitive materials for liquid electrochemical sensors. The materials include homoleptic and heteroleptic phthalocyanine complexes formed by phthalocyanine, porphyrin and naphthalocyanine rings. A high degree of cross-selectiviy towards antioxidant compounds (including vannilic acid, pyrogallol, ascorbic acid and catechin) has been attained by using different phthalocyanine complexes. The features observed in the cyclic voltammograms reflect the rich electrochemistry of either the phthalocyanine molecules or the studied solutions. In consequence, each sensor shows a selective response to the antioxidant analysed.
The obtained voltammograms from by using highly ordered electrodes prepared using the Langmuir–Blodgett (LB) or the Langmuir–Schaefer (LS) techniques show better resolution and stability than those of disordered electrodes prepared by casting. For this reason, ordered films have been chosen to construct an array of liquid sensors. The principal component analysis (PCA) of the obtained signals has allowed that a clear discrimination of the antioxidant solutions be achieved.
The rich and varied responses produced by antioxidant molecules evidences that voltammetric electrodes based on phthalocyanines, are especially suitable for the analysis of compounds with electrochemical activity. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2004.11.002 |