Loading…

Plasma-induced magnetic patterning of FePd thin films without and with exchange bias

[Display omitted] We demonstrate control of magnetic domain structures in continuous FePd thin films by patterning their surfaces with plasma treatment. The Fe-oxide layer formed on the surface upon ambient exposure of the FePd alloy thin film grown on an Al2O3(0001) substrate was patterned into mic...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2020-10, Vol.527, p.146831, Article 146831
Main Authors: Wang, Wei-Hsiang, Chang, Po-Chun, Jiang, Pei-hsun, Lin, Wen-Chin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] We demonstrate control of magnetic domain structures in continuous FePd thin films by patterning their surfaces with plasma treatment. The Fe-oxide layer formed on the surface upon ambient exposure of the FePd alloy thin film grown on an Al2O3(0001) substrate was patterned into microstructures by e-beam lithography followed by O2- or Ar-plasma treatment. Microscopic pinning of magnetic domain walls in the thin films is then observed by magneto-optic Kerr effect microscopy, with the magnetic field needed to reverse the magnetization of the plasma-treated areas being larger than that for the untreated areas. An intriguing competition between the uniaxial anisotropy and the exchange bias is also observed in the system. This study demonstrates that patterning of the film surface with plasma treatment can be an easy and efficient method for sophisticated engineering of magnetic structures in thin films, and therefore has potential application in developing future data-storage and spintronic devices.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2020.146831