Loading…

Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets

[Display omitted] •MnNi doped on pristine and vacancy g-C3N4 for CO2 reduction are studied.•Vacancy can firmly trap NiMn which promotes the selective CC coupling to ethanol.•ICOHP along the reaction path reveals the evolution of the CC coupling process.•The most preferable C-C coupling pathway is fo...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2022-09, Vol.595, p.153527, Article 153527
Main Authors: Roongcharoen, Thantip, Mano, Poobodin, Jitwatanasirikul, Thanadol, Sikam, Pornsawan, Butburee, Teera, Takahashi, Kaito, Namuangruk, Supawadee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913
cites cdi_FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913
container_end_page
container_issue
container_start_page 153527
container_title Applied surface science
container_volume 595
creator Roongcharoen, Thantip
Mano, Poobodin
Jitwatanasirikul, Thanadol
Sikam, Pornsawan
Butburee, Teera
Takahashi, Kaito
Namuangruk, Supawadee
description [Display omitted] •MnNi doped on pristine and vacancy g-C3N4 for CO2 reduction are studied.•Vacancy can firmly trap NiMn which promotes the selective CC coupling to ethanol.•ICOHP along the reaction path reveals the evolution of the CC coupling process.•The most preferable C-C coupling pathway is found for *CO + *CHO to *COCHO.•Ni and Mn show fully-filled 3d10 and half-filled 3d5 configurations, respectively.•NiMn at vacancy site donates an excess electron to adsorbates during C-C coupling. To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.
doi_str_mv 10.1016/j.apsusc.2022.153527
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apsusc_2022_153527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433222010790</els_id><sourcerecordid>S0169433222010790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwBhzyAi1N0rTdBQlN_JPGdtk9yhxvzdQ1VZIN7cqTk6mcudiy7O-z_SPkkRU5K1j1tM_1EI4Bcl5wnjMpJK-vyIQ1tcikbMprMkljs6wUgt-SuxD2RcF46k7Iz7pF5zFa0B21fbC7NlLX0-_2TJfZSYPu4UwH7w4uYqCxRRqwQ4j2hHS-4tSjOaYqSaKjGFvdu-5isLRfPTVuQEN3Xg-tTSsoaL9Jvd5Gb01yahFjuCc3W90FfPjLU7J-e13PP7LF6v1z_rLIgIsqZrXQBaAssZQoAUqdQt1UBpmecVNK4OkpkRLbNlXTVKJhGxBMS82qzYyJKSlHW_AuBI9bNXh70P6sWKEuGNVejRjVBaMaMSbZ8yjDdNrJolcBLPaAxvqEQRln_zf4BRIkf5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets</title><source>ScienceDirect Freedom Collection</source><creator>Roongcharoen, Thantip ; Mano, Poobodin ; Jitwatanasirikul, Thanadol ; Sikam, Pornsawan ; Butburee, Teera ; Takahashi, Kaito ; Namuangruk, Supawadee</creator><creatorcontrib>Roongcharoen, Thantip ; Mano, Poobodin ; Jitwatanasirikul, Thanadol ; Sikam, Pornsawan ; Butburee, Teera ; Takahashi, Kaito ; Namuangruk, Supawadee</creatorcontrib><description>[Display omitted] •MnNi doped on pristine and vacancy g-C3N4 for CO2 reduction are studied.•Vacancy can firmly trap NiMn which promotes the selective CC coupling to ethanol.•ICOHP along the reaction path reveals the evolution of the CC coupling process.•The most preferable C-C coupling pathway is found for *CO + *CHO to *COCHO.•Ni and Mn show fully-filled 3d10 and half-filled 3d5 configurations, respectively.•NiMn at vacancy site donates an excess electron to adsorbates during C-C coupling. To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2022.153527</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>C-C coupling ; C2 product ; CO2 reduction ; Electronic structure ; Graphitic carbon nitride</subject><ispartof>Applied surface science, 2022-09, Vol.595, p.153527, Article 153527</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913</citedby><cites>FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roongcharoen, Thantip</creatorcontrib><creatorcontrib>Mano, Poobodin</creatorcontrib><creatorcontrib>Jitwatanasirikul, Thanadol</creatorcontrib><creatorcontrib>Sikam, Pornsawan</creatorcontrib><creatorcontrib>Butburee, Teera</creatorcontrib><creatorcontrib>Takahashi, Kaito</creatorcontrib><creatorcontrib>Namuangruk, Supawadee</creatorcontrib><title>Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets</title><title>Applied surface science</title><description>[Display omitted] •MnNi doped on pristine and vacancy g-C3N4 for CO2 reduction are studied.•Vacancy can firmly trap NiMn which promotes the selective CC coupling to ethanol.•ICOHP along the reaction path reveals the evolution of the CC coupling process.•The most preferable C-C coupling pathway is found for *CO + *CHO to *COCHO.•Ni and Mn show fully-filled 3d10 and half-filled 3d5 configurations, respectively.•NiMn at vacancy site donates an excess electron to adsorbates during C-C coupling. To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.</description><subject>C-C coupling</subject><subject>C2 product</subject><subject>CO2 reduction</subject><subject>Electronic structure</subject><subject>Graphitic carbon nitride</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwBhzyAi1N0rTdBQlN_JPGdtk9yhxvzdQ1VZIN7cqTk6mcudiy7O-z_SPkkRU5K1j1tM_1EI4Bcl5wnjMpJK-vyIQ1tcikbMprMkljs6wUgt-SuxD2RcF46k7Iz7pF5zFa0B21fbC7NlLX0-_2TJfZSYPu4UwH7w4uYqCxRRqwQ4j2hHS-4tSjOaYqSaKjGFvdu-5isLRfPTVuQEN3Xg-tTSsoaL9Jvd5Gb01yahFjuCc3W90FfPjLU7J-e13PP7LF6v1z_rLIgIsqZrXQBaAssZQoAUqdQt1UBpmecVNK4OkpkRLbNlXTVKJhGxBMS82qzYyJKSlHW_AuBI9bNXh70P6sWKEuGNVejRjVBaMaMSbZ8yjDdNrJolcBLPaAxvqEQRln_zf4BRIkf5w</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Roongcharoen, Thantip</creator><creator>Mano, Poobodin</creator><creator>Jitwatanasirikul, Thanadol</creator><creator>Sikam, Pornsawan</creator><creator>Butburee, Teera</creator><creator>Takahashi, Kaito</creator><creator>Namuangruk, Supawadee</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets</title><author>Roongcharoen, Thantip ; Mano, Poobodin ; Jitwatanasirikul, Thanadol ; Sikam, Pornsawan ; Butburee, Teera ; Takahashi, Kaito ; Namuangruk, Supawadee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C-C coupling</topic><topic>C2 product</topic><topic>CO2 reduction</topic><topic>Electronic structure</topic><topic>Graphitic carbon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roongcharoen, Thantip</creatorcontrib><creatorcontrib>Mano, Poobodin</creatorcontrib><creatorcontrib>Jitwatanasirikul, Thanadol</creatorcontrib><creatorcontrib>Sikam, Pornsawan</creatorcontrib><creatorcontrib>Butburee, Teera</creatorcontrib><creatorcontrib>Takahashi, Kaito</creatorcontrib><creatorcontrib>Namuangruk, Supawadee</creatorcontrib><collection>CrossRef</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roongcharoen, Thantip</au><au>Mano, Poobodin</au><au>Jitwatanasirikul, Thanadol</au><au>Sikam, Pornsawan</au><au>Butburee, Teera</au><au>Takahashi, Kaito</au><au>Namuangruk, Supawadee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets</atitle><jtitle>Applied surface science</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>595</volume><spage>153527</spage><pages>153527-</pages><artnum>153527</artnum><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted] •MnNi doped on pristine and vacancy g-C3N4 for CO2 reduction are studied.•Vacancy can firmly trap NiMn which promotes the selective CC coupling to ethanol.•ICOHP along the reaction path reveals the evolution of the CC coupling process.•The most preferable C-C coupling pathway is found for *CO + *CHO to *COCHO.•Ni and Mn show fully-filled 3d10 and half-filled 3d5 configurations, respectively.•NiMn at vacancy site donates an excess electron to adsorbates during C-C coupling. To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2022.153527</doi></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2022-09, Vol.595, p.153527, Article 153527
issn 0169-4332
1873-5584
language eng
recordid cdi_crossref_primary_10_1016_j_apsusc_2022_153527
source ScienceDirect Freedom Collection
subjects C-C coupling
C2 product
CO2 reduction
Electronic structure
Graphitic carbon nitride
title Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20insight%20on%20why%20N-vacancy%20promotes%20the%20selective%20CO2%20reduction%20to%20ethanol%20on%20NiMn%20doped%20graphitic%20carbon%20nitride%20sheets&rft.jtitle=Applied%20surface%20science&rft.au=Roongcharoen,%20Thantip&rft.date=2022-09-01&rft.volume=595&rft.spage=153527&rft.pages=153527-&rft.artnum=153527&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2022.153527&rft_dat=%3Celsevier_cross%3ES0169433222010790%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c236t-73a0ce54e45e5cc4a5cc786de1a92d45c200135c21f86886381bc31a5a16b913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true