Loading…

Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications

[Display omitted] •The degree of disorder in high-entropy alloys (HEA) is extended, by developing amorphous coatings.•A novel NbTaTiVZr(O) high-entropy metallic glass (HEMG) is synthetized.•NbTaTiVZr(O) HEMG showed superior cytocompatibility than its HEA counterpart.•The HEMG exhibits stable surface...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2022-09, Vol.596, p.153615, Article 153615
Main Authors: Cemin, Felipe, Luís Artico, Leonardo, Piroli, Vanessa, Andrés Yunes, José, Alejandro Figueroa, Carlos, Alvarez, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33
cites cdi_FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33
container_end_page
container_issue
container_start_page 153615
container_title Applied surface science
container_volume 596
creator Cemin, Felipe
Luís Artico, Leonardo
Piroli, Vanessa
Andrés Yunes, José
Alejandro Figueroa, Carlos
Alvarez, Fernando
description [Display omitted] •The degree of disorder in high-entropy alloys (HEA) is extended, by developing amorphous coatings.•A novel NbTaTiVZr(O) high-entropy metallic glass (HEMG) is synthetized.•NbTaTiVZr(O) HEMG showed superior cytocompatibility than its HEA counterpart.•The HEMG exhibits stable surface chemical states, hydrophilicity, and enhanced corrosion resistance.•These findings may open up for innovative design strategies for biocoatings. This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is > 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.
doi_str_mv 10.1016/j.apsusc.2022.153615
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apsusc_2022_153615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433222011667</els_id><sourcerecordid>S0169433222011667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EEqXwBgweYUiI49hJFiRU8SdVdKAwsFhf_NO6SuLITiv17XEVZiYP996jzwehW5KlJCP8YZfCEPZBpnmW5ylhlBN2hmakKmnCWFWco1ms1UlBaX6JrkLYZRnJYzpD4XM_aG-dx7bHBzt6hxvrpOsGGG1jWzseT8lHs4a1_f7xd6t7vLWbbaL72B2OuNMjtK2VeNNCCFi6uOs3AZuIjKROKyuhxTAMsRQz14drdGGgDfrm752jr5fn9eItWa5e3xdPy0TmlI-JUkoCZTmwmulMNcRAwU3ZlKYuqwoqqsuac8MBapXxWqkCWKOklkXNmQFK56iYuNK7ELw2YvC2A38UJBMncWInJnHiJE5M4uLscZrpeNvBai-CtLqX8Sdey1EoZ_8H_AK5EnyP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cemin, Felipe ; Luís Artico, Leonardo ; Piroli, Vanessa ; Andrés Yunes, José ; Alejandro Figueroa, Carlos ; Alvarez, Fernando</creator><creatorcontrib>Cemin, Felipe ; Luís Artico, Leonardo ; Piroli, Vanessa ; Andrés Yunes, José ; Alejandro Figueroa, Carlos ; Alvarez, Fernando</creatorcontrib><description>[Display omitted] •The degree of disorder in high-entropy alloys (HEA) is extended, by developing amorphous coatings.•A novel NbTaTiVZr(O) high-entropy metallic glass (HEMG) is synthetized.•NbTaTiVZr(O) HEMG showed superior cytocompatibility than its HEA counterpart.•The HEMG exhibits stable surface chemical states, hydrophilicity, and enhanced corrosion resistance.•These findings may open up for innovative design strategies for biocoatings. This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is &gt; 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2022.153615</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biocompatibility ; Biomaterials ; Coatings ; High-entropy alloys ; Surface characterization ; Thin films</subject><ispartof>Applied surface science, 2022-09, Vol.596, p.153615, Article 153615</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33</citedby><cites>FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cemin, Felipe</creatorcontrib><creatorcontrib>Luís Artico, Leonardo</creatorcontrib><creatorcontrib>Piroli, Vanessa</creatorcontrib><creatorcontrib>Andrés Yunes, José</creatorcontrib><creatorcontrib>Alejandro Figueroa, Carlos</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><title>Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications</title><title>Applied surface science</title><description>[Display omitted] •The degree of disorder in high-entropy alloys (HEA) is extended, by developing amorphous coatings.•A novel NbTaTiVZr(O) high-entropy metallic glass (HEMG) is synthetized.•NbTaTiVZr(O) HEMG showed superior cytocompatibility than its HEA counterpart.•The HEMG exhibits stable surface chemical states, hydrophilicity, and enhanced corrosion resistance.•These findings may open up for innovative design strategies for biocoatings. This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is &gt; 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.</description><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Coatings</subject><subject>High-entropy alloys</subject><subject>Surface characterization</subject><subject>Thin films</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAYRS0EEqXwBgweYUiI49hJFiRU8SdVdKAwsFhf_NO6SuLITiv17XEVZiYP996jzwehW5KlJCP8YZfCEPZBpnmW5ylhlBN2hmakKmnCWFWco1ms1UlBaX6JrkLYZRnJYzpD4XM_aG-dx7bHBzt6hxvrpOsGGG1jWzseT8lHs4a1_f7xd6t7vLWbbaL72B2OuNMjtK2VeNNCCFi6uOs3AZuIjKROKyuhxTAMsRQz14drdGGgDfrm752jr5fn9eItWa5e3xdPy0TmlI-JUkoCZTmwmulMNcRAwU3ZlKYuqwoqqsuac8MBapXxWqkCWKOklkXNmQFK56iYuNK7ELw2YvC2A38UJBMncWInJnHiJE5M4uLscZrpeNvBai-CtLqX8Sdey1EoZ_8H_AK5EnyP</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Cemin, Felipe</creator><creator>Luís Artico, Leonardo</creator><creator>Piroli, Vanessa</creator><creator>Andrés Yunes, José</creator><creator>Alejandro Figueroa, Carlos</creator><creator>Alvarez, Fernando</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220915</creationdate><title>Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications</title><author>Cemin, Felipe ; Luís Artico, Leonardo ; Piroli, Vanessa ; Andrés Yunes, José ; Alejandro Figueroa, Carlos ; Alvarez, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Coatings</topic><topic>High-entropy alloys</topic><topic>Surface characterization</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cemin, Felipe</creatorcontrib><creatorcontrib>Luís Artico, Leonardo</creatorcontrib><creatorcontrib>Piroli, Vanessa</creatorcontrib><creatorcontrib>Andrés Yunes, José</creatorcontrib><creatorcontrib>Alejandro Figueroa, Carlos</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><collection>CrossRef</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cemin, Felipe</au><au>Luís Artico, Leonardo</au><au>Piroli, Vanessa</au><au>Andrés Yunes, José</au><au>Alejandro Figueroa, Carlos</au><au>Alvarez, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications</atitle><jtitle>Applied surface science</jtitle><date>2022-09-15</date><risdate>2022</risdate><volume>596</volume><spage>153615</spage><pages>153615-</pages><artnum>153615</artnum><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted] •The degree of disorder in high-entropy alloys (HEA) is extended, by developing amorphous coatings.•A novel NbTaTiVZr(O) high-entropy metallic glass (HEMG) is synthetized.•NbTaTiVZr(O) HEMG showed superior cytocompatibility than its HEA counterpart.•The HEMG exhibits stable surface chemical states, hydrophilicity, and enhanced corrosion resistance.•These findings may open up for innovative design strategies for biocoatings. This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is &gt; 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2022.153615</doi></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2022-09, Vol.596, p.153615, Article 153615
issn 0169-4332
1873-5584
language eng
recordid cdi_crossref_primary_10_1016_j_apsusc_2022_153615
source ScienceDirect Freedom Collection 2022-2024
subjects Biocompatibility
Biomaterials
Coatings
High-entropy alloys
Surface characterization
Thin films
title Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20in%20vitro%20biocompatibility%20in%20NbTaTiVZr(O)%20high-entropy%20metallic%20glass%20coatings%20for%20biomedical%20applications&rft.jtitle=Applied%20surface%20science&rft.au=Cemin,%20Felipe&rft.date=2022-09-15&rft.volume=596&rft.spage=153615&rft.pages=153615-&rft.artnum=153615&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2022.153615&rft_dat=%3Celsevier_cross%3ES0169433222011667%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c236t-dddca352a595e0db1fa46f7b7f9788a83e7966f6aa9d069dd4a5bdcec4965fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true