Loading…

Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst

[Display omitted] •Utilizing greenhouse gas CO2 to synthesize useful feedstock chemicals and fuels.•Sustainable MMO heterogeneous catalyst for the direct hydrogenation of CO2 into formic acid.•The Ru+3/4 state of acive catalyst readily exchange the electrons between the spinal cubic phase of ZrO2 ox...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2023-09, Vol.631, p.157556, Article 157556
Main Authors: Bankar, Balasaheb D., Naikwadi, Dhanaji R., Biradar, Ankush V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3
cites cdi_FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3
container_end_page
container_issue
container_start_page 157556
container_title Applied surface science
container_volume 631
creator Bankar, Balasaheb D.
Naikwadi, Dhanaji R.
Biradar, Ankush V.
description [Display omitted] •Utilizing greenhouse gas CO2 to synthesize useful feedstock chemicals and fuels.•Sustainable MMO heterogeneous catalyst for the direct hydrogenation of CO2 into formic acid.•The Ru+3/4 state of acive catalyst readily exchange the electrons between the spinal cubic phase of ZrO2 oxide.•The Ru/ZrO2 oxide catalyst gave excellent activity for the hydrogenation of CO2 to Formic acid (40 mmol) The development of active, cost-effective heterogeneous catalysts for the hydrogenation of CO2 to chemicals is currently progressing rapidly. In this study, we have demonstrated a significantly lower weight percentage (wt.%) RuO2/ZrO2 oxide catalyst that is effective for CO2 hydrogenation to formic acid (FA) synthesis. RuO2/ZrO2 was synthesized using a co-precipitation followed by a hydrothermal method. The X-ray diffraction pattern exhibits the cubic phase of ZrO2 with an average crystal size of 80.7 nm and tetragonal Ru oxide. Scanning electron microscopy and transmission electron microscopy confirmed that RuO2 was uniformly dispersed on the ZrO2 surface, with fringes measuring 0.22 and 0.25 nm corresponding to tetragonal Ru, which were incorporated in the ZrO2 oxide. XPS analysis showed that the Ru3/4+ chemical state strongly interacts with the ZrO2 facet, as confirmed via the Ru (110) and (211) planes. The outstanding performance of the 2.7 wt% RuO2/ZrO2 catalyst for CO2 hydrogenation yielded 40 mmol of FA with 39.7 TON. Based on the above investigations, we proposed a plausible mechanistic pathway for the hydrogenation of CO2 to FA over a RuO2/ZrO2 catalyst.
doi_str_mv 10.1016/j.apsusc.2023.157556
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apsusc_2023_157556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433223012345</els_id><sourcerecordid>S0169433223012345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgx-gRQ7dtxkQUIVUKRKXWC2_HNNXbVxZDsVZeTJSQkDE9MdzvmOrj6EbimZUULF3XamutQnMytJyWa0mleVOEMTWs9ZUVU1P0eTodYUnLHyEl2ltCWElkM6QV_Lo43hHVqVfWhxcHixLnEO2IW49wYr4y0OB4gYnPPGQ5vxBjL8MBD6hGOfN9D6fo_Dh7eAU991IWYYsBabXg8j3UYlwJ8-mvCnaFRWu2PK1-jCqV2Cm987RW9Pj6-LZbFaP78sHlaFYUTkAngJoiFcMNHoxrna8tromtNGzU3NSMOb0jItQGhqrNBVTYFYILQCYzTXbIr4uGtiSCmCk130exWPkhJ58ii3cvQoTx7l6HHA7kcMht8OHqJMJw0GrI9gsrTB_z_wDcaHgZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bankar, Balasaheb D. ; Naikwadi, Dhanaji R. ; Biradar, Ankush V.</creator><creatorcontrib>Bankar, Balasaheb D. ; Naikwadi, Dhanaji R. ; Biradar, Ankush V.</creatorcontrib><description>[Display omitted] •Utilizing greenhouse gas CO2 to synthesize useful feedstock chemicals and fuels.•Sustainable MMO heterogeneous catalyst for the direct hydrogenation of CO2 into formic acid.•The Ru+3/4 state of acive catalyst readily exchange the electrons between the spinal cubic phase of ZrO2 oxide.•The Ru/ZrO2 oxide catalyst gave excellent activity for the hydrogenation of CO2 to Formic acid (40 mmol) The development of active, cost-effective heterogeneous catalysts for the hydrogenation of CO2 to chemicals is currently progressing rapidly. In this study, we have demonstrated a significantly lower weight percentage (wt.%) RuO2/ZrO2 oxide catalyst that is effective for CO2 hydrogenation to formic acid (FA) synthesis. RuO2/ZrO2 was synthesized using a co-precipitation followed by a hydrothermal method. The X-ray diffraction pattern exhibits the cubic phase of ZrO2 with an average crystal size of 80.7 nm and tetragonal Ru oxide. Scanning electron microscopy and transmission electron microscopy confirmed that RuO2 was uniformly dispersed on the ZrO2 surface, with fringes measuring 0.22 and 0.25 nm corresponding to tetragonal Ru, which were incorporated in the ZrO2 oxide. XPS analysis showed that the Ru3/4+ chemical state strongly interacts with the ZrO2 facet, as confirmed via the Ru (110) and (211) planes. The outstanding performance of the 2.7 wt% RuO2/ZrO2 catalyst for CO2 hydrogenation yielded 40 mmol of FA with 39.7 TON. Based on the above investigations, we proposed a plausible mechanistic pathway for the hydrogenation of CO2 to FA over a RuO2/ZrO2 catalyst.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2023.157556</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CO2 conversion ; Energy transformation ; Formic acid ; Mixed metal oxide ; RuO2/ZrO2</subject><ispartof>Applied surface science, 2023-09, Vol.631, p.157556, Article 157556</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3</citedby><cites>FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3</cites><orcidid>0000-0003-0111-3931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bankar, Balasaheb D.</creatorcontrib><creatorcontrib>Naikwadi, Dhanaji R.</creatorcontrib><creatorcontrib>Biradar, Ankush V.</creatorcontrib><title>Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst</title><title>Applied surface science</title><description>[Display omitted] •Utilizing greenhouse gas CO2 to synthesize useful feedstock chemicals and fuels.•Sustainable MMO heterogeneous catalyst for the direct hydrogenation of CO2 into formic acid.•The Ru+3/4 state of acive catalyst readily exchange the electrons between the spinal cubic phase of ZrO2 oxide.•The Ru/ZrO2 oxide catalyst gave excellent activity for the hydrogenation of CO2 to Formic acid (40 mmol) The development of active, cost-effective heterogeneous catalysts for the hydrogenation of CO2 to chemicals is currently progressing rapidly. In this study, we have demonstrated a significantly lower weight percentage (wt.%) RuO2/ZrO2 oxide catalyst that is effective for CO2 hydrogenation to formic acid (FA) synthesis. RuO2/ZrO2 was synthesized using a co-precipitation followed by a hydrothermal method. The X-ray diffraction pattern exhibits the cubic phase of ZrO2 with an average crystal size of 80.7 nm and tetragonal Ru oxide. Scanning electron microscopy and transmission electron microscopy confirmed that RuO2 was uniformly dispersed on the ZrO2 surface, with fringes measuring 0.22 and 0.25 nm corresponding to tetragonal Ru, which were incorporated in the ZrO2 oxide. XPS analysis showed that the Ru3/4+ chemical state strongly interacts with the ZrO2 facet, as confirmed via the Ru (110) and (211) planes. The outstanding performance of the 2.7 wt% RuO2/ZrO2 catalyst for CO2 hydrogenation yielded 40 mmol of FA with 39.7 TON. Based on the above investigations, we proposed a plausible mechanistic pathway for the hydrogenation of CO2 to FA over a RuO2/ZrO2 catalyst.</description><subject>CO2 conversion</subject><subject>Energy transformation</subject><subject>Formic acid</subject><subject>Mixed metal oxide</subject><subject>RuO2/ZrO2</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgx-gRQ7dtxkQUIVUKRKXWC2_HNNXbVxZDsVZeTJSQkDE9MdzvmOrj6EbimZUULF3XamutQnMytJyWa0mleVOEMTWs9ZUVU1P0eTodYUnLHyEl2ltCWElkM6QV_Lo43hHVqVfWhxcHixLnEO2IW49wYr4y0OB4gYnPPGQ5vxBjL8MBD6hGOfN9D6fo_Dh7eAU991IWYYsBabXg8j3UYlwJ8-mvCnaFRWu2PK1-jCqV2Cm987RW9Pj6-LZbFaP78sHlaFYUTkAngJoiFcMNHoxrna8tromtNGzU3NSMOb0jItQGhqrNBVTYFYILQCYzTXbIr4uGtiSCmCk130exWPkhJ58ii3cvQoTx7l6HHA7kcMht8OHqJMJw0GrI9gsrTB_z_wDcaHgZM</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Bankar, Balasaheb D.</creator><creator>Naikwadi, Dhanaji R.</creator><creator>Biradar, Ankush V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0111-3931</orcidid></search><sort><creationdate>20230915</creationdate><title>Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst</title><author>Bankar, Balasaheb D. ; Naikwadi, Dhanaji R. ; Biradar, Ankush V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CO2 conversion</topic><topic>Energy transformation</topic><topic>Formic acid</topic><topic>Mixed metal oxide</topic><topic>RuO2/ZrO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bankar, Balasaheb D.</creatorcontrib><creatorcontrib>Naikwadi, Dhanaji R.</creatorcontrib><creatorcontrib>Biradar, Ankush V.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bankar, Balasaheb D.</au><au>Naikwadi, Dhanaji R.</au><au>Biradar, Ankush V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst</atitle><jtitle>Applied surface science</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>631</volume><spage>157556</spage><pages>157556-</pages><artnum>157556</artnum><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted] •Utilizing greenhouse gas CO2 to synthesize useful feedstock chemicals and fuels.•Sustainable MMO heterogeneous catalyst for the direct hydrogenation of CO2 into formic acid.•The Ru+3/4 state of acive catalyst readily exchange the electrons between the spinal cubic phase of ZrO2 oxide.•The Ru/ZrO2 oxide catalyst gave excellent activity for the hydrogenation of CO2 to Formic acid (40 mmol) The development of active, cost-effective heterogeneous catalysts for the hydrogenation of CO2 to chemicals is currently progressing rapidly. In this study, we have demonstrated a significantly lower weight percentage (wt.%) RuO2/ZrO2 oxide catalyst that is effective for CO2 hydrogenation to formic acid (FA) synthesis. RuO2/ZrO2 was synthesized using a co-precipitation followed by a hydrothermal method. The X-ray diffraction pattern exhibits the cubic phase of ZrO2 with an average crystal size of 80.7 nm and tetragonal Ru oxide. Scanning electron microscopy and transmission electron microscopy confirmed that RuO2 was uniformly dispersed on the ZrO2 surface, with fringes measuring 0.22 and 0.25 nm corresponding to tetragonal Ru, which were incorporated in the ZrO2 oxide. XPS analysis showed that the Ru3/4+ chemical state strongly interacts with the ZrO2 facet, as confirmed via the Ru (110) and (211) planes. The outstanding performance of the 2.7 wt% RuO2/ZrO2 catalyst for CO2 hydrogenation yielded 40 mmol of FA with 39.7 TON. Based on the above investigations, we proposed a plausible mechanistic pathway for the hydrogenation of CO2 to FA over a RuO2/ZrO2 catalyst.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2023.157556</doi><orcidid>https://orcid.org/0000-0003-0111-3931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2023-09, Vol.631, p.157556, Article 157556
issn 0169-4332
1873-5584
language eng
recordid cdi_crossref_primary_10_1016_j_apsusc_2023_157556
source ScienceDirect Freedom Collection 2022-2024
subjects CO2 conversion
Energy transformation
Formic acid
Mixed metal oxide
RuO2/ZrO2
title Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20of%20CO2%20to%20formic%20acid%20over%20efficient%20heterogeneous%20ruthenium%20oxide%20supported%20on%20cubic%20phase%20zirconium%20oxide%20catalyst&rft.jtitle=Applied%20surface%20science&rft.au=Bankar,%20Balasaheb%20D.&rft.date=2023-09-15&rft.volume=631&rft.spage=157556&rft.pages=157556-&rft.artnum=157556&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2023.157556&rft_dat=%3Celsevier_cross%3ES0169433223012345%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-e42e69046369b9ff8d48cb8419a7c8309492d3b6e6b1cd6b581e0de015eccb4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true