Loading…

Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production

The metal hydrogen-bonded framework derived ZnCdS/ZnS heterojunction possesses ultra-fine unit particles and high porosity structure, thus exhibiting superior photocatalytic hydrogen evolution performance (1.68 mmol/h). [Display omitted] •Ultra-fine ZnCdS/ZnS heterojunction with high-porosity is fab...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2024-06, Vol.657, p.159795, Article 159795
Main Authors: Liu, Sanmei, Wang, Wen, Shi, Shunli, Liao, Sheng, Zhong, Minli, Xiao, Weiming, Wang, Shuhua, Wang, Xuewen, Chen, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3
cites cdi_FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3
container_end_page
container_issue
container_start_page 159795
container_title Applied surface science
container_volume 657
creator Liu, Sanmei
Wang, Wen
Shi, Shunli
Liao, Sheng
Zhong, Minli
Xiao, Weiming
Wang, Shuhua
Wang, Xuewen
Chen, Chao
description The metal hydrogen-bonded framework derived ZnCdS/ZnS heterojunction possesses ultra-fine unit particles and high porosity structure, thus exhibiting superior photocatalytic hydrogen evolution performance (1.68 mmol/h). [Display omitted] •Ultra-fine ZnCdS/ZnS heterojunction with high-porosity is fabricated via M-HOF.•The unit particle size and surface area of ZnCdS/ZnS are only 5 nm and up to 320 m2 g−1, respectively.•The ultra-fine size and high porosity improves separation efficiency of charge carrier.•The ZnCdS/ZnS heterojunction achieves superior photocatalytic HER of 1.68 mmol h−1. The introduction of metal complex units makes it possible to expand the functional applications of metal hydrogen-bonded organic frameworks (M-HOFs). An M-HOFs-templated strategy was developed to construct ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production. Due to the weak and feasible hydrogen-bonding interactions, the nonmetallic units on HOFs can be quickly replaced by S2− in aqueous solution and derived into porous sulfides without pyrolysis process. Surprisingly, the surface area of ZnCdS/ZnS heterojunction was up to 320 m2 g−1. The ultra-fine heterojunction with high porosity offered more surface reaction sites and shortened carrier transport distance, improving separation efficiency of photogenerated electrons and holes. The size and structure-dependent properties of ZnCdS/ZnS heterojunction exhibited excellent photocatalytic hydrogen evolution rate, which was 1.68 mmol h−1 without cocatalyst. This study provides a novel strategy for constructing ultra-fine heterojunction with high porosity and high surface area to achieve efficient H2 evolution.
doi_str_mv 10.1016/j.apsusc.2024.159795
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_apsusc_2024_159795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433224005087</els_id><sourcerecordid>S0169433224005087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhjOARCm8AYNfIGnspE6yIKEKKFIlhsLSxfLluHFo7chxqPIYvDEp6cx0hl_nv3xR9IDTBKeYLpqEt13fyYSkJE_wsiqq5VU0G6UqzrOM3ES3XdekKSZlkc2in_WgvNuDjYWzChRyfs-tkUh7foST819IgTffo9IfguexNhbQzq7UdrGzW1RDAO-a3spgnEUnE2pUm30dt867zoQBaecRaG2kARtQW7vgJA_8MIQxpb6ko9Y71f953EXXmh86uL_cefT58vyxWseb99e31dMmlllKQ0zLJVUSMiIox0oITXghQAgFWnJKS53TSmHOCaeZECUt0mJczIUATRVRKptH-eQrx6KdB81ab47cDwyn7IySNWxCyc4o2YRyfHuc3mDs9m3As-68TIIyHmRgypn_DX4BbsiH6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production</title><source>ScienceDirect Journals</source><creator>Liu, Sanmei ; Wang, Wen ; Shi, Shunli ; Liao, Sheng ; Zhong, Minli ; Xiao, Weiming ; Wang, Shuhua ; Wang, Xuewen ; Chen, Chao</creator><creatorcontrib>Liu, Sanmei ; Wang, Wen ; Shi, Shunli ; Liao, Sheng ; Zhong, Minli ; Xiao, Weiming ; Wang, Shuhua ; Wang, Xuewen ; Chen, Chao</creatorcontrib><description>The metal hydrogen-bonded framework derived ZnCdS/ZnS heterojunction possesses ultra-fine unit particles and high porosity structure, thus exhibiting superior photocatalytic hydrogen evolution performance (1.68 mmol/h). [Display omitted] •Ultra-fine ZnCdS/ZnS heterojunction with high-porosity is fabricated via M-HOF.•The unit particle size and surface area of ZnCdS/ZnS are only 5 nm and up to 320 m2 g−1, respectively.•The ultra-fine size and high porosity improves separation efficiency of charge carrier.•The ZnCdS/ZnS heterojunction achieves superior photocatalytic HER of 1.68 mmol h−1. The introduction of metal complex units makes it possible to expand the functional applications of metal hydrogen-bonded organic frameworks (M-HOFs). An M-HOFs-templated strategy was developed to construct ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production. Due to the weak and feasible hydrogen-bonding interactions, the nonmetallic units on HOFs can be quickly replaced by S2− in aqueous solution and derived into porous sulfides without pyrolysis process. Surprisingly, the surface area of ZnCdS/ZnS heterojunction was up to 320 m2 g−1. The ultra-fine heterojunction with high porosity offered more surface reaction sites and shortened carrier transport distance, improving separation efficiency of photogenerated electrons and holes. The size and structure-dependent properties of ZnCdS/ZnS heterojunction exhibited excellent photocatalytic hydrogen evolution rate, which was 1.68 mmol h−1 without cocatalyst. This study provides a novel strategy for constructing ultra-fine heterojunction with high porosity and high surface area to achieve efficient H2 evolution.</description><identifier>ISSN: 0169-4332</identifier><identifier>DOI: 10.1016/j.apsusc.2024.159795</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>High-porosity ; Metal hydrogen-bonded organic frameworks ; Photocatalytic hydrogen ; Ultra-fine ; ZnCdS/ZnS heterojunction</subject><ispartof>Applied surface science, 2024-06, Vol.657, p.159795, Article 159795</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3</citedby><cites>FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3</cites><orcidid>0000-0002-0913-0544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Sanmei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Shi, Shunli</creatorcontrib><creatorcontrib>Liao, Sheng</creatorcontrib><creatorcontrib>Zhong, Minli</creatorcontrib><creatorcontrib>Xiao, Weiming</creatorcontrib><creatorcontrib>Wang, Shuhua</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><title>Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production</title><title>Applied surface science</title><description>The metal hydrogen-bonded framework derived ZnCdS/ZnS heterojunction possesses ultra-fine unit particles and high porosity structure, thus exhibiting superior photocatalytic hydrogen evolution performance (1.68 mmol/h). [Display omitted] •Ultra-fine ZnCdS/ZnS heterojunction with high-porosity is fabricated via M-HOF.•The unit particle size and surface area of ZnCdS/ZnS are only 5 nm and up to 320 m2 g−1, respectively.•The ultra-fine size and high porosity improves separation efficiency of charge carrier.•The ZnCdS/ZnS heterojunction achieves superior photocatalytic HER of 1.68 mmol h−1. The introduction of metal complex units makes it possible to expand the functional applications of metal hydrogen-bonded organic frameworks (M-HOFs). An M-HOFs-templated strategy was developed to construct ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production. Due to the weak and feasible hydrogen-bonding interactions, the nonmetallic units on HOFs can be quickly replaced by S2− in aqueous solution and derived into porous sulfides without pyrolysis process. Surprisingly, the surface area of ZnCdS/ZnS heterojunction was up to 320 m2 g−1. The ultra-fine heterojunction with high porosity offered more surface reaction sites and shortened carrier transport distance, improving separation efficiency of photogenerated electrons and holes. The size and structure-dependent properties of ZnCdS/ZnS heterojunction exhibited excellent photocatalytic hydrogen evolution rate, which was 1.68 mmol h−1 without cocatalyst. This study provides a novel strategy for constructing ultra-fine heterojunction with high porosity and high surface area to achieve efficient H2 evolution.</description><subject>High-porosity</subject><subject>Metal hydrogen-bonded organic frameworks</subject><subject>Photocatalytic hydrogen</subject><subject>Ultra-fine</subject><subject>ZnCdS/ZnS heterojunction</subject><issn>0169-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhjOARCm8AYNfIGnspE6yIKEKKFIlhsLSxfLluHFo7chxqPIYvDEp6cx0hl_nv3xR9IDTBKeYLpqEt13fyYSkJE_wsiqq5VU0G6UqzrOM3ES3XdekKSZlkc2in_WgvNuDjYWzChRyfs-tkUh7foST819IgTffo9IfguexNhbQzq7UdrGzW1RDAO-a3spgnEUnE2pUm30dt867zoQBaecRaG2kARtQW7vgJA_8MIQxpb6ko9Y71f953EXXmh86uL_cefT58vyxWseb99e31dMmlllKQ0zLJVUSMiIox0oITXghQAgFWnJKS53TSmHOCaeZECUt0mJczIUATRVRKptH-eQrx6KdB81ab47cDwyn7IySNWxCyc4o2YRyfHuc3mDs9m3As-68TIIyHmRgypn_DX4BbsiH6g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Sanmei</creator><creator>Wang, Wen</creator><creator>Shi, Shunli</creator><creator>Liao, Sheng</creator><creator>Zhong, Minli</creator><creator>Xiao, Weiming</creator><creator>Wang, Shuhua</creator><creator>Wang, Xuewen</creator><creator>Chen, Chao</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0913-0544</orcidid></search><sort><creationdate>20240601</creationdate><title>Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production</title><author>Liu, Sanmei ; Wang, Wen ; Shi, Shunli ; Liao, Sheng ; Zhong, Minli ; Xiao, Weiming ; Wang, Shuhua ; Wang, Xuewen ; Chen, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>High-porosity</topic><topic>Metal hydrogen-bonded organic frameworks</topic><topic>Photocatalytic hydrogen</topic><topic>Ultra-fine</topic><topic>ZnCdS/ZnS heterojunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sanmei</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Shi, Shunli</creatorcontrib><creatorcontrib>Liao, Sheng</creatorcontrib><creatorcontrib>Zhong, Minli</creatorcontrib><creatorcontrib>Xiao, Weiming</creatorcontrib><creatorcontrib>Wang, Shuhua</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><collection>CrossRef</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sanmei</au><au>Wang, Wen</au><au>Shi, Shunli</au><au>Liao, Sheng</au><au>Zhong, Minli</au><au>Xiao, Weiming</au><au>Wang, Shuhua</au><au>Wang, Xuewen</au><au>Chen, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production</atitle><jtitle>Applied surface science</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>657</volume><spage>159795</spage><pages>159795-</pages><artnum>159795</artnum><issn>0169-4332</issn><abstract>The metal hydrogen-bonded framework derived ZnCdS/ZnS heterojunction possesses ultra-fine unit particles and high porosity structure, thus exhibiting superior photocatalytic hydrogen evolution performance (1.68 mmol/h). [Display omitted] •Ultra-fine ZnCdS/ZnS heterojunction with high-porosity is fabricated via M-HOF.•The unit particle size and surface area of ZnCdS/ZnS are only 5 nm and up to 320 m2 g−1, respectively.•The ultra-fine size and high porosity improves separation efficiency of charge carrier.•The ZnCdS/ZnS heterojunction achieves superior photocatalytic HER of 1.68 mmol h−1. The introduction of metal complex units makes it possible to expand the functional applications of metal hydrogen-bonded organic frameworks (M-HOFs). An M-HOFs-templated strategy was developed to construct ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production. Due to the weak and feasible hydrogen-bonding interactions, the nonmetallic units on HOFs can be quickly replaced by S2− in aqueous solution and derived into porous sulfides without pyrolysis process. Surprisingly, the surface area of ZnCdS/ZnS heterojunction was up to 320 m2 g−1. The ultra-fine heterojunction with high porosity offered more surface reaction sites and shortened carrier transport distance, improving separation efficiency of photogenerated electrons and holes. The size and structure-dependent properties of ZnCdS/ZnS heterojunction exhibited excellent photocatalytic hydrogen evolution rate, which was 1.68 mmol h−1 without cocatalyst. This study provides a novel strategy for constructing ultra-fine heterojunction with high porosity and high surface area to achieve efficient H2 evolution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2024.159795</doi><orcidid>https://orcid.org/0000-0002-0913-0544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2024-06, Vol.657, p.159795, Article 159795
issn 0169-4332
language eng
recordid cdi_crossref_primary_10_1016_j_apsusc_2024_159795
source ScienceDirect Journals
subjects High-porosity
Metal hydrogen-bonded organic frameworks
Photocatalytic hydrogen
Ultra-fine
ZnCdS/ZnS heterojunction
title Hydrogen-bonded organic framework derived ultra-fine ZnCdS/ZnS heterojunction with high-porosity for efficient photocatalytic hydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-bonded%20organic%20framework%20derived%20ultra-fine%20ZnCdS/ZnS%20heterojunction%20with%20high-porosity%20for%20efficient%20photocatalytic%20hydrogen%20production&rft.jtitle=Applied%20surface%20science&rft.au=Liu,%20Sanmei&rft.date=2024-06-01&rft.volume=657&rft.spage=159795&rft.pages=159795-&rft.artnum=159795&rft.issn=0169-4332&rft_id=info:doi/10.1016/j.apsusc.2024.159795&rft_dat=%3Celsevier_cross%3ES0169433224005087%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-6856dce32b6a1dbbf2a7bebbdefca668f469d1aa2a63bb86707287abbef6d2dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true