Loading…

Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection

Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence 2024-06, Vol.331, p.104115, Article 104115
Main Authors: Castro-Macías, Francisco M., Morales-Álvarez, Pablo, Wu, Yunan, Molina, Rafael, Katsaggelos, Aggelos K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3
cites cdi_FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3
container_end_page
container_issue
container_start_page 104115
container_title Artificial intelligence
container_volume 331
creator Castro-Macías, Francisco M.
Morales-Álvarez, Pablo
Wu, Yunan
Molina, Rafael
Katsaggelos, Aggelos K.
description Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to their high expressiveness and uncertainty quantification capabilities. One of the most successful GP-based MIL methods, VGPMIL, resorts to a variational bound to handle the intractability of the logistic function. Here, we formulate VGPMIL using Pólya-Gamma random variables. This approach yields the same variational posterior approximations as the original VGPMIL, which is a consequence of the two representations that the Hyperbolic Secant distribution admits. This leads us to propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one. Using the Gamma distribution we arrive at a new approach that obtains competitive or superior predictive performance and efficiency. This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem. We expect that this work provides useful ideas beyond MIL that can foster further research in the field.
doi_str_mv 10.1016/j.artint.2024.104115
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_artint_2024_104115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370224000511</els_id><sourcerecordid>S0004370224000511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcPAPpNh51A0HpKoCWqmIA-VsOc66dZXa0dpF6rfws7iEM6fV7s7szgwh95xNOOPTh_1EYbQuTnKWl2lUcl5dkBGfiTwTdc4vyYgxVmaFYPk1uQlhn9qirvmIfC9PPWDjO6vpB2jlIkXoEQK4qKL1jnpD4w5o57c2xIQyR6fPi0c67_tEG1DR0x59oxrbDbC3Yxdt3wFduRCV00DXoNBZt6XGI11saBKMSqNyVnV0BwePuFNboC1E-P1wS66M6gLc_dUx-Xx53iyW2fr9dbWYrzNdVHnMBBPJsdKC6cKIpqrqqsnBsLpkRpXQVIY3DARwUeRlLeq2rQvTzorpTLR8VkExJuVwV6MPAcHIHu1B4UlyJs8By70cApbngOUQcKI9DTRI2r4soAzaQnLaWkwGZOvt_wd-AMulioY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Castro-Macías, Francisco M. ; Morales-Álvarez, Pablo ; Wu, Yunan ; Molina, Rafael ; Katsaggelos, Aggelos K.</creator><creatorcontrib>Castro-Macías, Francisco M. ; Morales-Álvarez, Pablo ; Wu, Yunan ; Molina, Rafael ; Katsaggelos, Aggelos K.</creatorcontrib><description>Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to their high expressiveness and uncertainty quantification capabilities. One of the most successful GP-based MIL methods, VGPMIL, resorts to a variational bound to handle the intractability of the logistic function. Here, we formulate VGPMIL using Pólya-Gamma random variables. This approach yields the same variational posterior approximations as the original VGPMIL, which is a consequence of the two representations that the Hyperbolic Secant distribution admits. This leads us to propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one. Using the Gamma distribution we arrive at a new approach that obtains competitive or superior predictive performance and efficiency. This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem. We expect that this work provides useful ideas beyond MIL that can foster further research in the field.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2024.104115</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Gaussian processes ; Hyperbolic Secant distribution ; Intracranial hemorrhage detection ; Jaakkola bound ; Multiple Instance Learning ; Pólya-Gamma ; Variational inference</subject><ispartof>Artificial intelligence, 2024-06, Vol.331, p.104115, Article 104115</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3</citedby><cites>FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3</cites><orcidid>0000-0001-6980-9746 ; 0000-0003-4694-8588 ; 0000-0003-2793-0083 ; 0000-0002-9040-3641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castro-Macías, Francisco M.</creatorcontrib><creatorcontrib>Morales-Álvarez, Pablo</creatorcontrib><creatorcontrib>Wu, Yunan</creatorcontrib><creatorcontrib>Molina, Rafael</creatorcontrib><creatorcontrib>Katsaggelos, Aggelos K.</creatorcontrib><title>Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection</title><title>Artificial intelligence</title><description>Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to their high expressiveness and uncertainty quantification capabilities. One of the most successful GP-based MIL methods, VGPMIL, resorts to a variational bound to handle the intractability of the logistic function. Here, we formulate VGPMIL using Pólya-Gamma random variables. This approach yields the same variational posterior approximations as the original VGPMIL, which is a consequence of the two representations that the Hyperbolic Secant distribution admits. This leads us to propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one. Using the Gamma distribution we arrive at a new approach that obtains competitive or superior predictive performance and efficiency. This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem. We expect that this work provides useful ideas beyond MIL that can foster further research in the field.</description><subject>Gaussian processes</subject><subject>Hyperbolic Secant distribution</subject><subject>Intracranial hemorrhage detection</subject><subject>Jaakkola bound</subject><subject>Multiple Instance Learning</subject><subject>Pólya-Gamma</subject><subject>Variational inference</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcPAPpNh51A0HpKoCWqmIA-VsOc66dZXa0dpF6rfws7iEM6fV7s7szgwh95xNOOPTh_1EYbQuTnKWl2lUcl5dkBGfiTwTdc4vyYgxVmaFYPk1uQlhn9qirvmIfC9PPWDjO6vpB2jlIkXoEQK4qKL1jnpD4w5o57c2xIQyR6fPi0c67_tEG1DR0x59oxrbDbC3Yxdt3wFduRCV00DXoNBZt6XGI11saBKMSqNyVnV0BwePuFNboC1E-P1wS66M6gLc_dUx-Xx53iyW2fr9dbWYrzNdVHnMBBPJsdKC6cKIpqrqqsnBsLpkRpXQVIY3DARwUeRlLeq2rQvTzorpTLR8VkExJuVwV6MPAcHIHu1B4UlyJs8By70cApbngOUQcKI9DTRI2r4soAzaQnLaWkwGZOvt_wd-AMulioY</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Castro-Macías, Francisco M.</creator><creator>Morales-Álvarez, Pablo</creator><creator>Wu, Yunan</creator><creator>Molina, Rafael</creator><creator>Katsaggelos, Aggelos K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6980-9746</orcidid><orcidid>https://orcid.org/0000-0003-4694-8588</orcidid><orcidid>https://orcid.org/0000-0003-2793-0083</orcidid><orcidid>https://orcid.org/0000-0002-9040-3641</orcidid></search><sort><creationdate>202406</creationdate><title>Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection</title><author>Castro-Macías, Francisco M. ; Morales-Álvarez, Pablo ; Wu, Yunan ; Molina, Rafael ; Katsaggelos, Aggelos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gaussian processes</topic><topic>Hyperbolic Secant distribution</topic><topic>Intracranial hemorrhage detection</topic><topic>Jaakkola bound</topic><topic>Multiple Instance Learning</topic><topic>Pólya-Gamma</topic><topic>Variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Macías, Francisco M.</creatorcontrib><creatorcontrib>Morales-Álvarez, Pablo</creatorcontrib><creatorcontrib>Wu, Yunan</creatorcontrib><creatorcontrib>Molina, Rafael</creatorcontrib><creatorcontrib>Katsaggelos, Aggelos K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Macías, Francisco M.</au><au>Morales-Álvarez, Pablo</au><au>Wu, Yunan</au><au>Molina, Rafael</au><au>Katsaggelos, Aggelos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection</atitle><jtitle>Artificial intelligence</jtitle><date>2024-06</date><risdate>2024</risdate><volume>331</volume><spage>104115</spage><pages>104115-</pages><artnum>104115</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Multiple Instance Learning (MIL) is a weakly supervised paradigm that has been successfully applied to many different scientific areas and is particularly well suited to medical imaging. Probabilistic MIL methods, and more specifically Gaussian Processes (GPs), have achieved excellent results due to their high expressiveness and uncertainty quantification capabilities. One of the most successful GP-based MIL methods, VGPMIL, resorts to a variational bound to handle the intractability of the logistic function. Here, we formulate VGPMIL using Pólya-Gamma random variables. This approach yields the same variational posterior approximations as the original VGPMIL, which is a consequence of the two representations that the Hyperbolic Secant distribution admits. This leads us to propose a general GP-based MIL method that takes different forms by simply leveraging distributions other than the Hyperbolic Secant one. Using the Gamma distribution we arrive at a new approach that obtains competitive or superior predictive performance and efficiency. This is validated in a comprehensive experimental study including one synthetic MIL dataset, two well-known MIL benchmarks, and a real-world medical problem. We expect that this work provides useful ideas beyond MIL that can foster further research in the field.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2024.104115</doi><orcidid>https://orcid.org/0000-0001-6980-9746</orcidid><orcidid>https://orcid.org/0000-0003-4694-8588</orcidid><orcidid>https://orcid.org/0000-0003-2793-0083</orcidid><orcidid>https://orcid.org/0000-0002-9040-3641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2024-06, Vol.331, p.104115, Article 104115
issn 0004-3702
1872-7921
language eng
recordid cdi_crossref_primary_10_1016_j_artint_2024_104115
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Gaussian processes
Hyperbolic Secant distribution
Intracranial hemorrhage detection
Jaakkola bound
Multiple Instance Learning
Pólya-Gamma
Variational inference
title Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Secant%20representation%20of%20the%20logistic%20function:%20Application%20to%20probabilistic%20Multiple%20Instance%20Learning%20for%20CT%20intracranial%20hemorrhage%20detection&rft.jtitle=Artificial%20intelligence&rft.au=Castro-Mac%C3%ADas,%20Francisco%20M.&rft.date=2024-06&rft.volume=331&rft.spage=104115&rft.pages=104115-&rft.artnum=104115&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2024.104115&rft_dat=%3Celsevier_cross%3ES0004370224000511%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-707041ac70c3f7b5595b2ef0940fa4eb5f1b0e7e17324979dd93fd83687d185e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true