Loading…

Mask galaxy: Morphological segmentation of galaxies

The classification of galaxies based on their morphology is instrumental for the understanding of galaxy formation and evolution. This, in addition to the ever-growing digital astronomical datasets, has motivated the application of advanced computer vision techniques, such as Deep Learning. However,...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and computing 2020-10, Vol.33, p.100420, Article 100420
Main Authors: Farias, H., Ortiz, D., Damke, G., Jaque Arancibia, M., Solar, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classification of galaxies based on their morphology is instrumental for the understanding of galaxy formation and evolution. This, in addition to the ever-growing digital astronomical datasets, has motivated the application of advanced computer vision techniques, such as Deep Learning. However, these models have not been implemented as single pipelines that replicate detection, segmentation and morphological classification of galaxies directly from images, as it would be made by experts. We present the first implementation of an automatic machine learning pipeline for detection, segmentation and morphological classification of galaxies based on the Mask R-CNN Deep Learning architecture. This state-of-the-art model of Instance Segmentation also performs image segmentation at the pixel level, which is a recurrent need in the astronomical community. We achieve Mean Average Precision (mAP) of 0.93 in the morphological classification of Spiral or Elliptical galaxies for a set of 239,639 objects from the Galaxy Zoo sample and JPEG images from the Sloan Digital Sky Survey. As a direct use of segmentation, we test the model for deriving centroids of extended sources, reaching a precision better than 1.0 arcsecond. We also test the network under additive Gaussian noise. We find that the Mask R-CNN network is able to perform with accuracy over 92% for a distribution scale of 76.5 counts. The repository with the model code is in the following url: https://github.com/hfarias/mask_galaxy
ISSN:2213-1337
2213-1345
DOI:10.1016/j.ascom.2020.100420