Loading…
Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment
An unheard of growth in mobile data traffic has drawn attention from academia and industry. Mobile cloud computing is an emerging computing paradigm combining cloud computing and mobile networks to alleviate resource-constrained limitations of mobile devices, which can greatly improve network qualit...
Saved in:
Published in: | Applied soft computing 2019-07, Vol.80, p.534-545 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An unheard of growth in mobile data traffic has drawn attention from academia and industry. Mobile cloud computing is an emerging computing paradigm combining cloud computing and mobile networks to alleviate resource-constrained limitations of mobile devices, which can greatly improve network quality of service and efficiency to make good use of available network resource. Mobile cloud computing not only inherits the advantages of strong computing capacity and massive storage of cloud computing, but also overcomes the time and geographical restrictions, bringing benefits for mobile users to offload complex computation to powerful cloud servers for execution anytime and anywhere. To this end, an optimal task workflow scheduling scheme is proposed for the mobile devices, based on the dynamic voltage and frequency scaling technique and the whale optimization algorithm. Through considering three factors: task execution position, task execution sequence, and operating voltage and frequency of mobile devices, this study makes a tradeoff between performance and energy consumption by solving the joint optimization for task completion time and energy consumption simultaneously. Finally, a series of extensive simulation results has demonstrated and verified the scheme has distinguished performance in terms of efficiency and operational cost, providing feasible solutions to similar optimization problems of mobile cloud computing.
•The WOA algorithm is used in cloud computing environment.•WOA algorithm achieves better results compared with PSO algorithm.•The completion time and energy consumption are considered simultaneously. |
---|---|
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2019.04.027 |