Loading…

Unified model for interpreting multi-view echocardiographic sequences without temporal information

The robust and fully automatic interpretation of multi-view echocardiographic sequences across multi-vendor and multi-center is a challenging task due to abounding artifacts, low signal-to-noise ratio, large shape variations among different views, and large gaps across different centers and vendors....

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2020-03, Vol.88, p.106049, Article 106049
Main Authors: Li, Ming, Dong, Shizhou, Gao, Zhifan, Feng, Cheng, Xiong, Huahua, Zheng, Wei, Ghista, Dhanjoo, Zhang, Heye, de Albuquerque, Victor Hugo C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3
cites cdi_FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3
container_end_page
container_issue
container_start_page 106049
container_title Applied soft computing
container_volume 88
creator Li, Ming
Dong, Shizhou
Gao, Zhifan
Feng, Cheng
Xiong, Huahua
Zheng, Wei
Ghista, Dhanjoo
Zhang, Heye
de Albuquerque, Victor Hugo C.
description The robust and fully automatic interpretation of multi-view echocardiographic sequences across multi-vendor and multi-center is a challenging task due to abounding artifacts, low signal-to-noise ratio, large shape variations among different views, and large gaps across different centers and vendors. In this paper, a dense pyramid and deep supervision network (DPSN) is proposed to tackle this challenging task. DPSN incorporates the advantages of the densely connected network, feature pyramid network, and deeply supervised network, which help to extract and fuse multi-level and multi-scale holistic semantic information. This capability endows DPSN with prominent generalization and robustness, enabling it to yield a precise interpretation. To reduce the computational complexity and avoid the frequent information loss in temporal modeling, DPSN processes all frames independently (i.e., without utilizing temporal information) but can still obtain stable and coherent performance in the sequence. Adequate experiments on the heterogeneous (multi-view, multi-center, and multi-vendor) dataset (10858 labeled images) corroborate that DPSN achieves not only superior segmentation results but also prominent computational efficiency and stable performance. Estimation of the ejection fraction also shows good clinical correlation, revealing the clinical potential of DPSN.
doi_str_mv 10.1016/j.asoc.2019.106049
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2019_106049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494619308312</els_id><sourcerecordid>S1568494619308312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3</originalsourceid><addsrcrecordid>eNp9kM1qAyEURqW00DTtC3TlC0yqxjgK3ZTQPwh006zF6DUxzIxTNQ19-xrSdVf3cuF83O8gdE_JjBIqHvYzk6OdMUJVPQjC1QWaUNmyRglJL-u-ELLhiotrdJPznlRIMTlBm_UQfACH--igwz4mHIYCaUxQwrDF_aErofkOcMRgd9Ga5ELcJjPugsUZvg4wWMj4GMouHgou0I8xma6G1KjelBCHW3TlTZfh7m9O0frl-XP51qw-Xt-XT6vGzgkpjZVMAOOeK8EZd9Qb0zpKwXDjFnJDrGqBMWcWljinWtVKuhHggUnfMj_38yli51ybYs4JvB5T6E360ZTokyW91ydL-mRJny1V6PEMQf2s1kw623Dq5EICW7SL4T_8Fz5RdDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified model for interpreting multi-view echocardiographic sequences without temporal information</title><source>ScienceDirect Freedom Collection</source><creator>Li, Ming ; Dong, Shizhou ; Gao, Zhifan ; Feng, Cheng ; Xiong, Huahua ; Zheng, Wei ; Ghista, Dhanjoo ; Zhang, Heye ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Li, Ming ; Dong, Shizhou ; Gao, Zhifan ; Feng, Cheng ; Xiong, Huahua ; Zheng, Wei ; Ghista, Dhanjoo ; Zhang, Heye ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>The robust and fully automatic interpretation of multi-view echocardiographic sequences across multi-vendor and multi-center is a challenging task due to abounding artifacts, low signal-to-noise ratio, large shape variations among different views, and large gaps across different centers and vendors. In this paper, a dense pyramid and deep supervision network (DPSN) is proposed to tackle this challenging task. DPSN incorporates the advantages of the densely connected network, feature pyramid network, and deeply supervised network, which help to extract and fuse multi-level and multi-scale holistic semantic information. This capability endows DPSN with prominent generalization and robustness, enabling it to yield a precise interpretation. To reduce the computational complexity and avoid the frequent information loss in temporal modeling, DPSN processes all frames independently (i.e., without utilizing temporal information) but can still obtain stable and coherent performance in the sequence. Adequate experiments on the heterogeneous (multi-view, multi-center, and multi-vendor) dataset (10858 labeled images) corroborate that DPSN achieves not only superior segmentation results but also prominent computational efficiency and stable performance. Estimation of the ejection fraction also shows good clinical correlation, revealing the clinical potential of DPSN.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2019.106049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep supervision ; Dense pyramid ; Echocardiographic sequence ; Multi-center ; Multi-vendor ; Multi-view ; Unified model ; Without temporal information</subject><ispartof>Applied soft computing, 2020-03, Vol.88, p.106049, Article 106049</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3</citedby><cites>FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3</cites><orcidid>0000-0003-3886-4309 ; 0000-0002-8253-1686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Dong, Shizhou</creatorcontrib><creatorcontrib>Gao, Zhifan</creatorcontrib><creatorcontrib>Feng, Cheng</creatorcontrib><creatorcontrib>Xiong, Huahua</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Ghista, Dhanjoo</creatorcontrib><creatorcontrib>Zhang, Heye</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>Unified model for interpreting multi-view echocardiographic sequences without temporal information</title><title>Applied soft computing</title><description>The robust and fully automatic interpretation of multi-view echocardiographic sequences across multi-vendor and multi-center is a challenging task due to abounding artifacts, low signal-to-noise ratio, large shape variations among different views, and large gaps across different centers and vendors. In this paper, a dense pyramid and deep supervision network (DPSN) is proposed to tackle this challenging task. DPSN incorporates the advantages of the densely connected network, feature pyramid network, and deeply supervised network, which help to extract and fuse multi-level and multi-scale holistic semantic information. This capability endows DPSN with prominent generalization and robustness, enabling it to yield a precise interpretation. To reduce the computational complexity and avoid the frequent information loss in temporal modeling, DPSN processes all frames independently (i.e., without utilizing temporal information) but can still obtain stable and coherent performance in the sequence. Adequate experiments on the heterogeneous (multi-view, multi-center, and multi-vendor) dataset (10858 labeled images) corroborate that DPSN achieves not only superior segmentation results but also prominent computational efficiency and stable performance. Estimation of the ejection fraction also shows good clinical correlation, revealing the clinical potential of DPSN.</description><subject>Deep supervision</subject><subject>Dense pyramid</subject><subject>Echocardiographic sequence</subject><subject>Multi-center</subject><subject>Multi-vendor</subject><subject>Multi-view</subject><subject>Unified model</subject><subject>Without temporal information</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qAyEURqW00DTtC3TlC0yqxjgK3ZTQPwh006zF6DUxzIxTNQ19-xrSdVf3cuF83O8gdE_JjBIqHvYzk6OdMUJVPQjC1QWaUNmyRglJL-u-ELLhiotrdJPznlRIMTlBm_UQfACH--igwz4mHIYCaUxQwrDF_aErofkOcMRgd9Ga5ELcJjPugsUZvg4wWMj4GMouHgou0I8xma6G1KjelBCHW3TlTZfh7m9O0frl-XP51qw-Xt-XT6vGzgkpjZVMAOOeK8EZd9Qb0zpKwXDjFnJDrGqBMWcWljinWtVKuhHggUnfMj_38yli51ybYs4JvB5T6E360ZTokyW91ydL-mRJny1V6PEMQf2s1kw623Dq5EICW7SL4T_8Fz5RdDc</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Ming</creator><creator>Dong, Shizhou</creator><creator>Gao, Zhifan</creator><creator>Feng, Cheng</creator><creator>Xiong, Huahua</creator><creator>Zheng, Wei</creator><creator>Ghista, Dhanjoo</creator><creator>Zhang, Heye</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-8253-1686</orcidid></search><sort><creationdate>202003</creationdate><title>Unified model for interpreting multi-view echocardiographic sequences without temporal information</title><author>Li, Ming ; Dong, Shizhou ; Gao, Zhifan ; Feng, Cheng ; Xiong, Huahua ; Zheng, Wei ; Ghista, Dhanjoo ; Zhang, Heye ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep supervision</topic><topic>Dense pyramid</topic><topic>Echocardiographic sequence</topic><topic>Multi-center</topic><topic>Multi-vendor</topic><topic>Multi-view</topic><topic>Unified model</topic><topic>Without temporal information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Dong, Shizhou</creatorcontrib><creatorcontrib>Gao, Zhifan</creatorcontrib><creatorcontrib>Feng, Cheng</creatorcontrib><creatorcontrib>Xiong, Huahua</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Ghista, Dhanjoo</creatorcontrib><creatorcontrib>Zhang, Heye</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming</au><au>Dong, Shizhou</au><au>Gao, Zhifan</au><au>Feng, Cheng</au><au>Xiong, Huahua</au><au>Zheng, Wei</au><au>Ghista, Dhanjoo</au><au>Zhang, Heye</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified model for interpreting multi-view echocardiographic sequences without temporal information</atitle><jtitle>Applied soft computing</jtitle><date>2020-03</date><risdate>2020</risdate><volume>88</volume><spage>106049</spage><pages>106049-</pages><artnum>106049</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>The robust and fully automatic interpretation of multi-view echocardiographic sequences across multi-vendor and multi-center is a challenging task due to abounding artifacts, low signal-to-noise ratio, large shape variations among different views, and large gaps across different centers and vendors. In this paper, a dense pyramid and deep supervision network (DPSN) is proposed to tackle this challenging task. DPSN incorporates the advantages of the densely connected network, feature pyramid network, and deeply supervised network, which help to extract and fuse multi-level and multi-scale holistic semantic information. This capability endows DPSN with prominent generalization and robustness, enabling it to yield a precise interpretation. To reduce the computational complexity and avoid the frequent information loss in temporal modeling, DPSN processes all frames independently (i.e., without utilizing temporal information) but can still obtain stable and coherent performance in the sequence. Adequate experiments on the heterogeneous (multi-view, multi-center, and multi-vendor) dataset (10858 labeled images) corroborate that DPSN achieves not only superior segmentation results but also prominent computational efficiency and stable performance. Estimation of the ejection fraction also shows good clinical correlation, revealing the clinical potential of DPSN.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2019.106049</doi><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-8253-1686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2020-03, Vol.88, p.106049, Article 106049
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2019_106049
source ScienceDirect Freedom Collection
subjects Deep supervision
Dense pyramid
Echocardiographic sequence
Multi-center
Multi-vendor
Multi-view
Unified model
Without temporal information
title Unified model for interpreting multi-view echocardiographic sequences without temporal information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20model%20for%20interpreting%20multi-view%20echocardiographic%20sequences%20without%20temporal%20information&rft.jtitle=Applied%20soft%20computing&rft.au=Li,%20Ming&rft.date=2020-03&rft.volume=88&rft.spage=106049&rft.pages=106049-&rft.artnum=106049&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2019.106049&rft_dat=%3Celsevier_cross%3ES1568494619308312%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-c826e24f496424d1faa7d11ea4ad58b0c97e22da5c0dd979781b6efe28f72f3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true