Loading…

SHADE–WOA: A metaheuristic algorithm for global optimization

Differential evolution and its variants have already proven their worth in the field of evolutionary optimization techniques. This study further enhances the success history-based adaptive differential evolution (SHADE) by hybridizing it with a modified Whale optimization algorithm (WOA). In the new...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2021-12, Vol.113, p.107866, Article 107866
Main Authors: Chakraborty, Sanjoy, Sharma, Sushmita, Saha, Apu Kumar, Chakraborty, Sandip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83
cites cdi_FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83
container_end_page
container_issue
container_start_page 107866
container_title Applied soft computing
container_volume 113
creator Chakraborty, Sanjoy
Sharma, Sushmita
Saha, Apu Kumar
Chakraborty, Sandip
description Differential evolution and its variants have already proven their worth in the field of evolutionary optimization techniques. This study further enhances the success history-based adaptive differential evolution (SHADE) by hybridizing it with a modified Whale optimization algorithm (WOA). In the new algorithm, the two algorithms, SHADE and modified WOA, carry out the search process independently and share information like the global best solution and whole population and thus guides both the algorithms to explore and exploit new promising areas in the search space. It also reduces the chance of being trapped in local optima and stagnation. The proposed algorithm (SHADE–WOA) is tested, evaluating CEC 2017 functions using dimensions 30, 50, and 100. The results are compared with modified DE algorithms, namely SaDE, SHADE, LSHADE, LSHADE-SPACMA, and LSHADE-cnEpSin, also with modified WOA algorithms, namely ACWOA, AWOA, IWOA, HIWOA, and MCSWOA. The new algorithm’s efficiency in solving real-world problems is examined by solving two unconstrained and four constrained engineering design problems. The performance is verified statistically using non-parametric statistical tests like Friedman’s test and Wilcoxon’s test. Analysis of numerical results, convergence analysis, diversity analysis, and statistical analysis ensures the enhanced performance of the proposed SHADE–WOA. •Introduced hybrid SHADE–WOA algorithm using SHADE and modified WOA.•A new phase “co-operative hunting strategy” is used on WOA.•A new parameter α is introduced in WOA for balancing exploration and exploitation.•Population information is shared among the algorithms to guide the search processes.•Compared with latest DE and WOA variants using CEC 2017 function set.
doi_str_mv 10.1016/j.asoc.2021.107866
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2021_107866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494621007882</els_id><sourcerecordid>S1568494621007882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4Gp-YGqSGZOMiDBotUKhCxWXIfPmpU2ZaUoSBV35D_6hX-KUunb1Lg_O5XIIOWd0wigTF-uJiR4mnHI2PKQS4oCMmJI8r4Rih0O-FCovq1Ick5MY13SAKq5G5OZpVt9Nf76-Xxf1VVZnPSazwrfgYnKQmW7pg0urPrM-ZMvON6bL_Da53n2a5PzmlBxZ00U8-7tj8nI_fb6d5fPFw-NtPc-hoDTlBmRV2RYYFVKVhW1KLAAr00jZcqAcy4IzbAxYIYDShlPZCgOKItqyAFWMCd_3QvAxBrR6G1xvwodmVO8M6LXeGdA7A3pvYICu9xAOy94dBh3B4QawdQEh6da7__BfWuFlsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SHADE–WOA: A metaheuristic algorithm for global optimization</title><source>Elsevier</source><creator>Chakraborty, Sanjoy ; Sharma, Sushmita ; Saha, Apu Kumar ; Chakraborty, Sandip</creator><creatorcontrib>Chakraborty, Sanjoy ; Sharma, Sushmita ; Saha, Apu Kumar ; Chakraborty, Sandip</creatorcontrib><description>Differential evolution and its variants have already proven their worth in the field of evolutionary optimization techniques. This study further enhances the success history-based adaptive differential evolution (SHADE) by hybridizing it with a modified Whale optimization algorithm (WOA). In the new algorithm, the two algorithms, SHADE and modified WOA, carry out the search process independently and share information like the global best solution and whole population and thus guides both the algorithms to explore and exploit new promising areas in the search space. It also reduces the chance of being trapped in local optima and stagnation. The proposed algorithm (SHADE–WOA) is tested, evaluating CEC 2017 functions using dimensions 30, 50, and 100. The results are compared with modified DE algorithms, namely SaDE, SHADE, LSHADE, LSHADE-SPACMA, and LSHADE-cnEpSin, also with modified WOA algorithms, namely ACWOA, AWOA, IWOA, HIWOA, and MCSWOA. The new algorithm’s efficiency in solving real-world problems is examined by solving two unconstrained and four constrained engineering design problems. The performance is verified statistically using non-parametric statistical tests like Friedman’s test and Wilcoxon’s test. Analysis of numerical results, convergence analysis, diversity analysis, and statistical analysis ensures the enhanced performance of the proposed SHADE–WOA. •Introduced hybrid SHADE–WOA algorithm using SHADE and modified WOA.•A new phase “co-operative hunting strategy” is used on WOA.•A new parameter α is introduced in WOA for balancing exploration and exploitation.•Population information is shared among the algorithms to guide the search processes.•Compared with latest DE and WOA variants using CEC 2017 function set.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2021.107866</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CEC 2017 ; Hybrid algorithm ; Real-world problem ; Success history-based adaptive differential evolution (SHADE) ; Whale optimization algorithm (WOA)</subject><ispartof>Applied soft computing, 2021-12, Vol.113, p.107866, Article 107866</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83</citedby><cites>FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83</cites><orcidid>0000-0002-3475-018X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chakraborty, Sanjoy</creatorcontrib><creatorcontrib>Sharma, Sushmita</creatorcontrib><creatorcontrib>Saha, Apu Kumar</creatorcontrib><creatorcontrib>Chakraborty, Sandip</creatorcontrib><title>SHADE–WOA: A metaheuristic algorithm for global optimization</title><title>Applied soft computing</title><description>Differential evolution and its variants have already proven their worth in the field of evolutionary optimization techniques. This study further enhances the success history-based adaptive differential evolution (SHADE) by hybridizing it with a modified Whale optimization algorithm (WOA). In the new algorithm, the two algorithms, SHADE and modified WOA, carry out the search process independently and share information like the global best solution and whole population and thus guides both the algorithms to explore and exploit new promising areas in the search space. It also reduces the chance of being trapped in local optima and stagnation. The proposed algorithm (SHADE–WOA) is tested, evaluating CEC 2017 functions using dimensions 30, 50, and 100. The results are compared with modified DE algorithms, namely SaDE, SHADE, LSHADE, LSHADE-SPACMA, and LSHADE-cnEpSin, also with modified WOA algorithms, namely ACWOA, AWOA, IWOA, HIWOA, and MCSWOA. The new algorithm’s efficiency in solving real-world problems is examined by solving two unconstrained and four constrained engineering design problems. The performance is verified statistically using non-parametric statistical tests like Friedman’s test and Wilcoxon’s test. Analysis of numerical results, convergence analysis, diversity analysis, and statistical analysis ensures the enhanced performance of the proposed SHADE–WOA. •Introduced hybrid SHADE–WOA algorithm using SHADE and modified WOA.•A new phase “co-operative hunting strategy” is used on WOA.•A new parameter α is introduced in WOA for balancing exploration and exploitation.•Population information is shared among the algorithms to guide the search processes.•Compared with latest DE and WOA variants using CEC 2017 function set.</description><subject>CEC 2017</subject><subject>Hybrid algorithm</subject><subject>Real-world problem</subject><subject>Success history-based adaptive differential evolution (SHADE)</subject><subject>Whale optimization algorithm (WOA)</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKs_4Gp-YGqSGZOMiDBotUKhCxWXIfPmpU2ZaUoSBV35D_6hX-KUunb1Lg_O5XIIOWd0wigTF-uJiR4mnHI2PKQS4oCMmJI8r4Rih0O-FCovq1Ick5MY13SAKq5G5OZpVt9Nf76-Xxf1VVZnPSazwrfgYnKQmW7pg0urPrM-ZMvON6bL_Da53n2a5PzmlBxZ00U8-7tj8nI_fb6d5fPFw-NtPc-hoDTlBmRV2RYYFVKVhW1KLAAr00jZcqAcy4IzbAxYIYDShlPZCgOKItqyAFWMCd_3QvAxBrR6G1xvwodmVO8M6LXeGdA7A3pvYICu9xAOy94dBh3B4QawdQEh6da7__BfWuFlsw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Chakraborty, Sanjoy</creator><creator>Sharma, Sushmita</creator><creator>Saha, Apu Kumar</creator><creator>Chakraborty, Sandip</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3475-018X</orcidid></search><sort><creationdate>202112</creationdate><title>SHADE–WOA: A metaheuristic algorithm for global optimization</title><author>Chakraborty, Sanjoy ; Sharma, Sushmita ; Saha, Apu Kumar ; Chakraborty, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CEC 2017</topic><topic>Hybrid algorithm</topic><topic>Real-world problem</topic><topic>Success history-based adaptive differential evolution (SHADE)</topic><topic>Whale optimization algorithm (WOA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sanjoy</creatorcontrib><creatorcontrib>Sharma, Sushmita</creatorcontrib><creatorcontrib>Saha, Apu Kumar</creatorcontrib><creatorcontrib>Chakraborty, Sandip</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Sanjoy</au><au>Sharma, Sushmita</au><au>Saha, Apu Kumar</au><au>Chakraborty, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHADE–WOA: A metaheuristic algorithm for global optimization</atitle><jtitle>Applied soft computing</jtitle><date>2021-12</date><risdate>2021</risdate><volume>113</volume><spage>107866</spage><pages>107866-</pages><artnum>107866</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>Differential evolution and its variants have already proven their worth in the field of evolutionary optimization techniques. This study further enhances the success history-based adaptive differential evolution (SHADE) by hybridizing it with a modified Whale optimization algorithm (WOA). In the new algorithm, the two algorithms, SHADE and modified WOA, carry out the search process independently and share information like the global best solution and whole population and thus guides both the algorithms to explore and exploit new promising areas in the search space. It also reduces the chance of being trapped in local optima and stagnation. The proposed algorithm (SHADE–WOA) is tested, evaluating CEC 2017 functions using dimensions 30, 50, and 100. The results are compared with modified DE algorithms, namely SaDE, SHADE, LSHADE, LSHADE-SPACMA, and LSHADE-cnEpSin, also with modified WOA algorithms, namely ACWOA, AWOA, IWOA, HIWOA, and MCSWOA. The new algorithm’s efficiency in solving real-world problems is examined by solving two unconstrained and four constrained engineering design problems. The performance is verified statistically using non-parametric statistical tests like Friedman’s test and Wilcoxon’s test. Analysis of numerical results, convergence analysis, diversity analysis, and statistical analysis ensures the enhanced performance of the proposed SHADE–WOA. •Introduced hybrid SHADE–WOA algorithm using SHADE and modified WOA.•A new phase “co-operative hunting strategy” is used on WOA.•A new parameter α is introduced in WOA for balancing exploration and exploitation.•Population information is shared among the algorithms to guide the search processes.•Compared with latest DE and WOA variants using CEC 2017 function set.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2021.107866</doi><orcidid>https://orcid.org/0000-0002-3475-018X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2021-12, Vol.113, p.107866, Article 107866
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2021_107866
source Elsevier
subjects CEC 2017
Hybrid algorithm
Real-world problem
Success history-based adaptive differential evolution (SHADE)
Whale optimization algorithm (WOA)
title SHADE–WOA: A metaheuristic algorithm for global optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHADE%E2%80%93WOA:%20A%20metaheuristic%20algorithm%20for%20global%20optimization&rft.jtitle=Applied%20soft%20computing&rft.au=Chakraborty,%20Sanjoy&rft.date=2021-12&rft.volume=113&rft.spage=107866&rft.pages=107866-&rft.artnum=107866&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2021.107866&rft_dat=%3Celsevier_cross%3ES1568494621007882%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-ac799fdc1067843fb4e3ce9ab77d2c02e4321ebacf66c00b207d6ac80eef43c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true