Loading…

An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time

This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2022-12, Vol.131, p.109783, Article 109783
Main Authors: Chen, Nanlei, Xie, Naiming, Wang, Yuquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563
cites cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563
container_end_page
container_issue
container_start_page 109783
container_title Applied soft computing
container_volume 131
creator Chen, Nanlei
Xie, Naiming
Wang, Yuquan
description This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization. •Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.
doi_str_mv 10.1016/j.asoc.2022.109783
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2022_109783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494622008328</els_id><sourcerecordid>S1568494622008328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVa-QIrtpI4jsakq_qRKbGBt2c44dZTElW2gvT2OyprVjOa9N5r5ELqnZEUJ5Q_9SkVvVowwlgdNLcoLtKCiZkXDBb3M_ZqLomoqfo1uYuxJDjVMLFC3mTAMLgHuYILkDFZD54NL-xFbH7Ad4Oj0ALj3Gse9P-Bo9tB-DW7q8CH4LI34J9sxHFNQJkGLuwCnWTMQ42xLboRbdGXVEOHury7R5_PTx_a12L2_vG03u8KwkqTCtJU22tKSVWVNGlbatSaiqjmlvNLUrCvRCK2gNlxRCzUBplsNQnPNbP6xXCJ23muCjzGAlYfgRhVOkhI5o5K9nFHJGZU8o8qhx3MI8mXfDoKMxsFkoHUBTJKtd__FfwFS6XRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</creator><creatorcontrib>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</creatorcontrib><description>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization. •Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2022.109783</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Elite genetic algorithm ; Flexible job shop scheduling problem ; Grey number ; Grey processing time ; Processing time extraction</subject><ispartof>Applied soft computing, 2022-12, Vol.131, p.109783, Article 109783</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</citedby><cites>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</cites><orcidid>0000-0001-9416-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Nanlei</creatorcontrib><creatorcontrib>Xie, Naiming</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><title>Applied soft computing</title><description>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization. •Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</description><subject>Elite genetic algorithm</subject><subject>Flexible job shop scheduling problem</subject><subject>Grey number</subject><subject>Grey processing time</subject><subject>Processing time extraction</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVa-QIrtpI4jsakq_qRKbGBt2c44dZTElW2gvT2OyprVjOa9N5r5ELqnZEUJ5Q_9SkVvVowwlgdNLcoLtKCiZkXDBb3M_ZqLomoqfo1uYuxJDjVMLFC3mTAMLgHuYILkDFZD54NL-xFbH7Ad4Oj0ALj3Gse9P-Bo9tB-DW7q8CH4LI34J9sxHFNQJkGLuwCnWTMQ42xLboRbdGXVEOHury7R5_PTx_a12L2_vG03u8KwkqTCtJU22tKSVWVNGlbatSaiqjmlvNLUrCvRCK2gNlxRCzUBplsNQnPNbP6xXCJ23muCjzGAlYfgRhVOkhI5o5K9nFHJGZU8o8qhx3MI8mXfDoKMxsFkoHUBTJKtd__FfwFS6XRx</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Nanlei</creator><creator>Xie, Naiming</creator><creator>Wang, Yuquan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9416-7087</orcidid></search><sort><creationdate>202212</creationdate><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><author>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Elite genetic algorithm</topic><topic>Flexible job shop scheduling problem</topic><topic>Grey number</topic><topic>Grey processing time</topic><topic>Processing time extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Nanlei</creatorcontrib><creatorcontrib>Xie, Naiming</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Nanlei</au><au>Xie, Naiming</au><au>Wang, Yuquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</atitle><jtitle>Applied soft computing</jtitle><date>2022-12</date><risdate>2022</risdate><volume>131</volume><spage>109783</spage><pages>109783-</pages><artnum>109783</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization. •Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2022.109783</doi><orcidid>https://orcid.org/0000-0001-9416-7087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2022-12, Vol.131, p.109783, Article 109783
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2022_109783
source ScienceDirect Freedom Collection
subjects Elite genetic algorithm
Flexible job shop scheduling problem
Grey number
Grey processing time
Processing time extraction
title An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elite%20genetic%20algorithm%20for%20flexible%20job%20shop%20scheduling%20problem%20with%20extracted%20grey%20processing%20time&rft.jtitle=Applied%20soft%20computing&rft.au=Chen,%20Nanlei&rft.date=2022-12&rft.volume=131&rft.spage=109783&rft.pages=109783-&rft.artnum=109783&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2022.109783&rft_dat=%3Celsevier_cross%3ES1568494622008328%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true