Loading…
An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time
This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations...
Saved in:
Published in: | Applied soft computing 2022-12, Vol.131, p.109783, Article 109783 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563 |
---|---|
cites | cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563 |
container_end_page | |
container_issue | |
container_start_page | 109783 |
container_title | Applied soft computing |
container_volume | 131 |
creator | Chen, Nanlei Xie, Naiming Wang, Yuquan |
description | This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization.
•Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search. |
doi_str_mv | 10.1016/j.asoc.2022.109783 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2022_109783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494622008328</els_id><sourcerecordid>S1568494622008328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVa-QIrtpI4jsakq_qRKbGBt2c44dZTElW2gvT2OyprVjOa9N5r5ELqnZEUJ5Q_9SkVvVowwlgdNLcoLtKCiZkXDBb3M_ZqLomoqfo1uYuxJDjVMLFC3mTAMLgHuYILkDFZD54NL-xFbH7Ad4Oj0ALj3Gse9P-Bo9tB-DW7q8CH4LI34J9sxHFNQJkGLuwCnWTMQ42xLboRbdGXVEOHury7R5_PTx_a12L2_vG03u8KwkqTCtJU22tKSVWVNGlbatSaiqjmlvNLUrCvRCK2gNlxRCzUBplsNQnPNbP6xXCJ23muCjzGAlYfgRhVOkhI5o5K9nFHJGZU8o8qhx3MI8mXfDoKMxsFkoHUBTJKtd__FfwFS6XRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</creator><creatorcontrib>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</creatorcontrib><description>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization.
•Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2022.109783</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Elite genetic algorithm ; Flexible job shop scheduling problem ; Grey number ; Grey processing time ; Processing time extraction</subject><ispartof>Applied soft computing, 2022-12, Vol.131, p.109783, Article 109783</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</citedby><cites>FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</cites><orcidid>0000-0001-9416-7087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Nanlei</creatorcontrib><creatorcontrib>Xie, Naiming</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><title>Applied soft computing</title><description>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization.
•Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</description><subject>Elite genetic algorithm</subject><subject>Flexible job shop scheduling problem</subject><subject>Grey number</subject><subject>Grey processing time</subject><subject>Processing time extraction</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVa-QIrtpI4jsakq_qRKbGBt2c44dZTElW2gvT2OyprVjOa9N5r5ELqnZEUJ5Q_9SkVvVowwlgdNLcoLtKCiZkXDBb3M_ZqLomoqfo1uYuxJDjVMLFC3mTAMLgHuYILkDFZD54NL-xFbH7Ad4Oj0ALj3Gse9P-Bo9tB-DW7q8CH4LI34J9sxHFNQJkGLuwCnWTMQ42xLboRbdGXVEOHury7R5_PTx_a12L2_vG03u8KwkqTCtJU22tKSVWVNGlbatSaiqjmlvNLUrCvRCK2gNlxRCzUBplsNQnPNbP6xXCJ23muCjzGAlYfgRhVOkhI5o5K9nFHJGZU8o8qhx3MI8mXfDoKMxsFkoHUBTJKtd__FfwFS6XRx</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Nanlei</creator><creator>Xie, Naiming</creator><creator>Wang, Yuquan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9416-7087</orcidid></search><sort><creationdate>202212</creationdate><title>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</title><author>Chen, Nanlei ; Xie, Naiming ; Wang, Yuquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Elite genetic algorithm</topic><topic>Flexible job shop scheduling problem</topic><topic>Grey number</topic><topic>Grey processing time</topic><topic>Processing time extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Nanlei</creatorcontrib><creatorcontrib>Xie, Naiming</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Nanlei</au><au>Xie, Naiming</au><au>Wang, Yuquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time</atitle><jtitle>Applied soft computing</jtitle><date>2022-12</date><risdate>2022</risdate><volume>131</volume><spage>109783</spage><pages>109783-</pages><artnum>109783</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>This paper investigates a flexible job shop scheduling problem with uncertain processing time. The uncertainty of the processing time is characterized by a generalized grey number. We extract generalized grey numbers from limited information in real-world production, and then extend their operations for scheduling. With generalized grey numbers, the problem is formulated by a mathematical model to minimize the makespan. We develop an elite genetic algorithm for finding excellent solutions. The algorithm employs an elite strategy and neighborhood search method to search for promising individuals on the premise of ensuring population diversity. To assess the performance of the suggested methods, we construct 10 benchmark instances using generalized grey numbers. The results of the experiments demonstrate the effectiveness and competitiveness of the proposed algorithm and characterization.
•Propose a flexible job shop scheduling problem with generalized grey processing time.•Provide generalized grey number extraction and operation methods for scheduling.•Formulate the suggested grey flexible job shop scheduling problem.•Design and evaluate an elite genetic algorithm with neighborhood search.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2022.109783</doi><orcidid>https://orcid.org/0000-0001-9416-7087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-4946 |
ispartof | Applied soft computing, 2022-12, Vol.131, p.109783, Article 109783 |
issn | 1568-4946 1872-9681 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_asoc_2022_109783 |
source | ScienceDirect Freedom Collection |
subjects | Elite genetic algorithm Flexible job shop scheduling problem Grey number Grey processing time Processing time extraction |
title | An elite genetic algorithm for flexible job shop scheduling problem with extracted grey processing time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20elite%20genetic%20algorithm%20for%20flexible%20job%20shop%20scheduling%20problem%20with%20extracted%20grey%20processing%20time&rft.jtitle=Applied%20soft%20computing&rft.au=Chen,%20Nanlei&rft.date=2022-12&rft.volume=131&rft.spage=109783&rft.pages=109783-&rft.artnum=109783&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2022.109783&rft_dat=%3Celsevier_cross%3ES1568494622008328%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-cd4bcbf1324370923f5b084761164b1c54898bae7c6a1fe70e2bdbe8b6b2f1563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |