Loading…

A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks

In multivariate time series forecasting tasks, expanding forecast length and improving forecast efficiency is an urgent need for practical applications. Accurate long-term forecasting of multivariate time series is challenging due to the entangled temporal patterns of multivariate time series and th...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2023-05, Vol.139, p.110214, Article 110214
Main Authors: Wang, Xingyu, Liu, Hui, Du, Junzhao, Dong, Xiyao, Yang, Zhihan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03
cites cdi_FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03
container_end_page
container_issue
container_start_page 110214
container_title Applied soft computing
container_volume 139
creator Wang, Xingyu
Liu, Hui
Du, Junzhao
Dong, Xiyao
Yang, Zhihan
description In multivariate time series forecasting tasks, expanding forecast length and improving forecast efficiency is an urgent need for practical applications. Accurate long-term forecasting of multivariate time series is challenging due to the entangled temporal patterns of multivariate time series and the complex dependencies between variables at different periods. However, it is unreliable for most current models to capture temporal and inter-variable dependencies in intertwined temporal patterns. Furthermore, the Auto-Correlation mechanism cannot precisely capture the local dynamics and long-term dependencies of time series. To address these issues, we propose a concise and efficient model named SDCNet, which integrates time series decomposition and convolutional neural networks (CNNs) into a unified framework. Unlike previous approaches, SDCNet untangles the entangled temporal patterns and uses CNNs to capture the dependencies in both temporal and feature dimensions, respectively. Specifically, SDCNet progressively decomposes seasonal and trend-cyclical components from past time series, and uses temporal and feature convolution modules to extract seasonal patterns and inter-variable dependencies, respectively. Compared to competing methods, SDCNet achieves the best performance on all of four real-world datasets with a relative accuracy improvement of 16.73%. In addition, SDCNet achieves a relative performance gain of 23.87% on datasets with no significant periodicity. •Our work proposes a concise and efficient time series forecasting model, SDCNet.•SDCNet uses CNNs to extract temporal dependence and inter-variable dependence.•SDCNet achieves a relative performance improvement of 16.73%.
doi_str_mv 10.1016/j.asoc.2023.110214
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2023_110214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494623002326</els_id><sourcerecordid>S1568494623002326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFP-wK5J9qNZ8FKKX1DwoueQTSYldTcpSVrpvzfb9uxpZl7mGYYHoUdKSkpo-7QtZfSqZIRVJaWE0foKzShfsKJrOb3OfdPyou7q9hbdxbglGeoYn6HjEg_ebYoEYcTjfkj2IIOVCXCyI-AIwULExgdQMibrNthB-vXhBys_9tZNyWVJQ452PtpkvcPS6bziDn7YT7McMrgPp3Li4z26MXKI8HCpc_T9-vK1ei_Wn28fq-W6UBUhqeBSatrrqubVgragqKQ1YwsNuqmBSmC6kQ1tjJS94aYzfcM6U2lYmKrnpCfVHLHzXRV8jAGM2AU7ynAUlIhJntiKSZ6Y5ImzvAw9nyHInx0sBBGVBadA22wiCe3tf_gf3Nl9NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks</title><source>ScienceDirect Journals</source><creator>Wang, Xingyu ; Liu, Hui ; Du, Junzhao ; Dong, Xiyao ; Yang, Zhihan</creator><creatorcontrib>Wang, Xingyu ; Liu, Hui ; Du, Junzhao ; Dong, Xiyao ; Yang, Zhihan</creatorcontrib><description>In multivariate time series forecasting tasks, expanding forecast length and improving forecast efficiency is an urgent need for practical applications. Accurate long-term forecasting of multivariate time series is challenging due to the entangled temporal patterns of multivariate time series and the complex dependencies between variables at different periods. However, it is unreliable for most current models to capture temporal and inter-variable dependencies in intertwined temporal patterns. Furthermore, the Auto-Correlation mechanism cannot precisely capture the local dynamics and long-term dependencies of time series. To address these issues, we propose a concise and efficient model named SDCNet, which integrates time series decomposition and convolutional neural networks (CNNs) into a unified framework. Unlike previous approaches, SDCNet untangles the entangled temporal patterns and uses CNNs to capture the dependencies in both temporal and feature dimensions, respectively. Specifically, SDCNet progressively decomposes seasonal and trend-cyclical components from past time series, and uses temporal and feature convolution modules to extract seasonal patterns and inter-variable dependencies, respectively. Compared to competing methods, SDCNet achieves the best performance on all of four real-world datasets with a relative accuracy improvement of 16.73%. In addition, SDCNet achieves a relative performance gain of 23.87% on datasets with no significant periodicity. •Our work proposes a concise and efficient time series forecasting model, SDCNet.•SDCNet uses CNNs to extract temporal dependence and inter-variable dependence.•SDCNet achieves a relative performance improvement of 16.73%.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2023.110214</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Inter-variable dependency ; Long-term forecasting ; Multivariate time series ; Temporal dependency ; Time series decomposition</subject><ispartof>Applied soft computing, 2023-05, Vol.139, p.110214, Article 110214</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03</citedby><cites>FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03</cites><orcidid>0000-0002-9672-7620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Du, Junzhao</creatorcontrib><creatorcontrib>Dong, Xiyao</creatorcontrib><creatorcontrib>Yang, Zhihan</creatorcontrib><title>A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks</title><title>Applied soft computing</title><description>In multivariate time series forecasting tasks, expanding forecast length and improving forecast efficiency is an urgent need for practical applications. Accurate long-term forecasting of multivariate time series is challenging due to the entangled temporal patterns of multivariate time series and the complex dependencies between variables at different periods. However, it is unreliable for most current models to capture temporal and inter-variable dependencies in intertwined temporal patterns. Furthermore, the Auto-Correlation mechanism cannot precisely capture the local dynamics and long-term dependencies of time series. To address these issues, we propose a concise and efficient model named SDCNet, which integrates time series decomposition and convolutional neural networks (CNNs) into a unified framework. Unlike previous approaches, SDCNet untangles the entangled temporal patterns and uses CNNs to capture the dependencies in both temporal and feature dimensions, respectively. Specifically, SDCNet progressively decomposes seasonal and trend-cyclical components from past time series, and uses temporal and feature convolution modules to extract seasonal patterns and inter-variable dependencies, respectively. Compared to competing methods, SDCNet achieves the best performance on all of four real-world datasets with a relative accuracy improvement of 16.73%. In addition, SDCNet achieves a relative performance gain of 23.87% on datasets with no significant periodicity. •Our work proposes a concise and efficient time series forecasting model, SDCNet.•SDCNet uses CNNs to extract temporal dependence and inter-variable dependence.•SDCNet achieves a relative performance improvement of 16.73%.</description><subject>Inter-variable dependency</subject><subject>Long-term forecasting</subject><subject>Multivariate time series</subject><subject>Temporal dependency</subject><subject>Time series decomposition</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFP-wK5J9qNZ8FKKX1DwoueQTSYldTcpSVrpvzfb9uxpZl7mGYYHoUdKSkpo-7QtZfSqZIRVJaWE0foKzShfsKJrOb3OfdPyou7q9hbdxbglGeoYn6HjEg_ebYoEYcTjfkj2IIOVCXCyI-AIwULExgdQMibrNthB-vXhBys_9tZNyWVJQ452PtpkvcPS6bziDn7YT7McMrgPp3Li4z26MXKI8HCpc_T9-vK1ei_Wn28fq-W6UBUhqeBSatrrqubVgragqKQ1YwsNuqmBSmC6kQ1tjJS94aYzfcM6U2lYmKrnpCfVHLHzXRV8jAGM2AU7ynAUlIhJntiKSZ6Y5ImzvAw9nyHInx0sBBGVBadA22wiCe3tf_gf3Nl9NQ</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wang, Xingyu</creator><creator>Liu, Hui</creator><creator>Du, Junzhao</creator><creator>Dong, Xiyao</creator><creator>Yang, Zhihan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9672-7620</orcidid></search><sort><creationdate>202305</creationdate><title>A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks</title><author>Wang, Xingyu ; Liu, Hui ; Du, Junzhao ; Dong, Xiyao ; Yang, Zhihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Inter-variable dependency</topic><topic>Long-term forecasting</topic><topic>Multivariate time series</topic><topic>Temporal dependency</topic><topic>Time series decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Du, Junzhao</creatorcontrib><creatorcontrib>Dong, Xiyao</creatorcontrib><creatorcontrib>Yang, Zhihan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xingyu</au><au>Liu, Hui</au><au>Du, Junzhao</au><au>Dong, Xiyao</au><au>Yang, Zhihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks</atitle><jtitle>Applied soft computing</jtitle><date>2023-05</date><risdate>2023</risdate><volume>139</volume><spage>110214</spage><pages>110214-</pages><artnum>110214</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>In multivariate time series forecasting tasks, expanding forecast length and improving forecast efficiency is an urgent need for practical applications. Accurate long-term forecasting of multivariate time series is challenging due to the entangled temporal patterns of multivariate time series and the complex dependencies between variables at different periods. However, it is unreliable for most current models to capture temporal and inter-variable dependencies in intertwined temporal patterns. Furthermore, the Auto-Correlation mechanism cannot precisely capture the local dynamics and long-term dependencies of time series. To address these issues, we propose a concise and efficient model named SDCNet, which integrates time series decomposition and convolutional neural networks (CNNs) into a unified framework. Unlike previous approaches, SDCNet untangles the entangled temporal patterns and uses CNNs to capture the dependencies in both temporal and feature dimensions, respectively. Specifically, SDCNet progressively decomposes seasonal and trend-cyclical components from past time series, and uses temporal and feature convolution modules to extract seasonal patterns and inter-variable dependencies, respectively. Compared to competing methods, SDCNet achieves the best performance on all of four real-world datasets with a relative accuracy improvement of 16.73%. In addition, SDCNet achieves a relative performance gain of 23.87% on datasets with no significant periodicity. •Our work proposes a concise and efficient time series forecasting model, SDCNet.•SDCNet uses CNNs to extract temporal dependence and inter-variable dependence.•SDCNet achieves a relative performance improvement of 16.73%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2023.110214</doi><orcidid>https://orcid.org/0000-0002-9672-7620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2023-05, Vol.139, p.110214, Article 110214
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2023_110214
source ScienceDirect Journals
subjects Inter-variable dependency
Long-term forecasting
Multivariate time series
Temporal dependency
Time series decomposition
title A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20long-term%20multivariate%20time%20series%20forecasting%20network%20combining%20series%20decomposition%20and%20convolutional%20neural%20networks&rft.jtitle=Applied%20soft%20computing&rft.au=Wang,%20Xingyu&rft.date=2023-05&rft.volume=139&rft.spage=110214&rft.pages=110214-&rft.artnum=110214&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2023.110214&rft_dat=%3Celsevier_cross%3ES1568494623002326%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-8aad1bd3483716ec1a14227ded54e1ae2d5a515faabf8f9fb529f3de7f3b80b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true