Loading…

Hybrid wavelet-neural network models for time series

The use of wavelet analysis contributes to better modeling for financial time series in the sense of both frequency and time. In this study, S&P500 and NASDAQ data are separated into several components utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network st...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2023-09, Vol.144, p.110469, Article 110469
Main Authors: Kılıç, Deniz Kenan, Uğur, Ömür
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83
cites cdi_FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83
container_end_page
container_issue
container_start_page 110469
container_title Applied soft computing
container_volume 144
creator Kılıç, Deniz Kenan
Uğur, Ömür
description The use of wavelet analysis contributes to better modeling for financial time series in the sense of both frequency and time. In this study, S&P500 and NASDAQ data are separated into several components utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network structure, each component is modeled. In addition, wavelets are used as an activation function in long short-term memory (LSTM) networks to form a hybrid model. The hybrid model is merged with MRA as a proposed method in this paper. Four distinct strategies are employed: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, and hybrid LSTM-Wavenet+MRA. Results show that the use of MRA and wavelets as an activation function together reduces the error the most. [Display omitted] •The study bridges the gap between hybrid models using MRA and hybrid models with WNN.•MRA improves the results of LSTM for financial time series.•Wavenet structure decreases the errors in neural networks.•Combining MRA and wavenet provides the best improvement in the analysis.•Changing dilation and translation parameters in each WNN node is insignificant.
doi_str_mv 10.1016/j.asoc.2023.110469
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2023_110469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494623004878</els_id><sourcerecordid>S1568494623004878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83</originalsourceid><addsrcrecordid>eNp9j8tKxDAYhYMoOI6-gKu-QGpuTRNwI4M6woAbXYc0-QOpvUhSZ5i3t6WuXZ2z-Q7nQ-iekpISKh_a0ubRlYwwXlJKhNQXaENVzbCWil7OvZIKCy3kNbrJuSUzpJnaILE_Nyn64mSP0MGEB_hJtisGmE5j-ir60UOXizCmYoo9FBlShHyLroLtMtz95RZ9vjx_7Pb48P76tns6YMeFmHAlm8ArSi3lTgIw5bnzlnMrJFekYgBaBkHAyqa22jVQM8lC4EL5RldB8S1i665LY84JgvlOsbfpbCgxi7dpzeJtFm-zes_Q4wrNx-EYIZnsIgwOfEzgJuPH-B_-C37uYWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid wavelet-neural network models for time series</title><source>ScienceDirect Freedom Collection</source><creator>Kılıç, Deniz Kenan ; Uğur, Ömür</creator><creatorcontrib>Kılıç, Deniz Kenan ; Uğur, Ömür</creatorcontrib><description>The use of wavelet analysis contributes to better modeling for financial time series in the sense of both frequency and time. In this study, S&amp;P500 and NASDAQ data are separated into several components utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network structure, each component is modeled. In addition, wavelets are used as an activation function in long short-term memory (LSTM) networks to form a hybrid model. The hybrid model is merged with MRA as a proposed method in this paper. Four distinct strategies are employed: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, and hybrid LSTM-Wavenet+MRA. Results show that the use of MRA and wavelets as an activation function together reduces the error the most. [Display omitted] •The study bridges the gap between hybrid models using MRA and hybrid models with WNN.•MRA improves the results of LSTM for financial time series.•Wavenet structure decreases the errors in neural networks.•Combining MRA and wavenet provides the best improvement in the analysis.•Changing dilation and translation parameters in each WNN node is insignificant.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2023.110469</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Long short-term memory (LSTM) ; Multiresolution analysis (MRA) ; Nonlinear models ; Recurrent neural network (RNN) ; Time series analysis ; Wavelet neural network (WNN) ; Wavenet</subject><ispartof>Applied soft computing, 2023-09, Vol.144, p.110469, Article 110469</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83</citedby><cites>FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83</cites><orcidid>0000-0001-9348-7775 ; 0000-0002-6996-3425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kılıç, Deniz Kenan</creatorcontrib><creatorcontrib>Uğur, Ömür</creatorcontrib><title>Hybrid wavelet-neural network models for time series</title><title>Applied soft computing</title><description>The use of wavelet analysis contributes to better modeling for financial time series in the sense of both frequency and time. In this study, S&amp;P500 and NASDAQ data are separated into several components utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network structure, each component is modeled. In addition, wavelets are used as an activation function in long short-term memory (LSTM) networks to form a hybrid model. The hybrid model is merged with MRA as a proposed method in this paper. Four distinct strategies are employed: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, and hybrid LSTM-Wavenet+MRA. Results show that the use of MRA and wavelets as an activation function together reduces the error the most. [Display omitted] •The study bridges the gap between hybrid models using MRA and hybrid models with WNN.•MRA improves the results of LSTM for financial time series.•Wavenet structure decreases the errors in neural networks.•Combining MRA and wavenet provides the best improvement in the analysis.•Changing dilation and translation parameters in each WNN node is insignificant.</description><subject>Long short-term memory (LSTM)</subject><subject>Multiresolution analysis (MRA)</subject><subject>Nonlinear models</subject><subject>Recurrent neural network (RNN)</subject><subject>Time series analysis</subject><subject>Wavelet neural network (WNN)</subject><subject>Wavenet</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxDAYhYMoOI6-gKu-QGpuTRNwI4M6woAbXYc0-QOpvUhSZ5i3t6WuXZ2z-Q7nQ-iekpISKh_a0ubRlYwwXlJKhNQXaENVzbCWil7OvZIKCy3kNbrJuSUzpJnaILE_Nyn64mSP0MGEB_hJtisGmE5j-ir60UOXizCmYoo9FBlShHyLroLtMtz95RZ9vjx_7Pb48P76tns6YMeFmHAlm8ArSi3lTgIw5bnzlnMrJFekYgBaBkHAyqa22jVQM8lC4EL5RldB8S1i665LY84JgvlOsbfpbCgxi7dpzeJtFm-zes_Q4wrNx-EYIZnsIgwOfEzgJuPH-B_-C37uYWc</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Kılıç, Deniz Kenan</creator><creator>Uğur, Ömür</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9348-7775</orcidid><orcidid>https://orcid.org/0000-0002-6996-3425</orcidid></search><sort><creationdate>202309</creationdate><title>Hybrid wavelet-neural network models for time series</title><author>Kılıç, Deniz Kenan ; Uğur, Ömür</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Long short-term memory (LSTM)</topic><topic>Multiresolution analysis (MRA)</topic><topic>Nonlinear models</topic><topic>Recurrent neural network (RNN)</topic><topic>Time series analysis</topic><topic>Wavelet neural network (WNN)</topic><topic>Wavenet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kılıç, Deniz Kenan</creatorcontrib><creatorcontrib>Uğur, Ömür</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kılıç, Deniz Kenan</au><au>Uğur, Ömür</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid wavelet-neural network models for time series</atitle><jtitle>Applied soft computing</jtitle><date>2023-09</date><risdate>2023</risdate><volume>144</volume><spage>110469</spage><pages>110469-</pages><artnum>110469</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>The use of wavelet analysis contributes to better modeling for financial time series in the sense of both frequency and time. In this study, S&amp;P500 and NASDAQ data are separated into several components utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network structure, each component is modeled. In addition, wavelets are used as an activation function in long short-term memory (LSTM) networks to form a hybrid model. The hybrid model is merged with MRA as a proposed method in this paper. Four distinct strategies are employed: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, and hybrid LSTM-Wavenet+MRA. Results show that the use of MRA and wavelets as an activation function together reduces the error the most. [Display omitted] •The study bridges the gap between hybrid models using MRA and hybrid models with WNN.•MRA improves the results of LSTM for financial time series.•Wavenet structure decreases the errors in neural networks.•Combining MRA and wavenet provides the best improvement in the analysis.•Changing dilation and translation parameters in each WNN node is insignificant.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2023.110469</doi><orcidid>https://orcid.org/0000-0001-9348-7775</orcidid><orcidid>https://orcid.org/0000-0002-6996-3425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2023-09, Vol.144, p.110469, Article 110469
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2023_110469
source ScienceDirect Freedom Collection
subjects Long short-term memory (LSTM)
Multiresolution analysis (MRA)
Nonlinear models
Recurrent neural network (RNN)
Time series analysis
Wavelet neural network (WNN)
Wavenet
title Hybrid wavelet-neural network models for time series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20wavelet-neural%20network%20models%20for%20time%20series&rft.jtitle=Applied%20soft%20computing&rft.au=K%C4%B1l%C4%B1%C3%A7,%20Deniz%20Kenan&rft.date=2023-09&rft.volume=144&rft.spage=110469&rft.pages=110469-&rft.artnum=110469&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2023.110469&rft_dat=%3Celsevier_cross%3ES1568494623004878%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-56bf3511a13c6ee28d3cda33a4638052ee96f40ea6b7a9cbe7262ff348db95f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true