Loading…

A frequency-domain approach with learnable filters for image classification

Machine learning applied to computer vision and signal processing is achieving results comparable to the human brain due to the great improvements brought by deep neural networks (DNN). The majority of state-of-the-art architectures are DNN-related, but only a few explicitly explore the frequency do...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing 2024-04, Vol.155, p.111443, Article 111443
Main Authors: Stuchi, José Augusto, Canto, Natalia Gil, Attux, Romis Ribeiro de Faissol, Boccato, Levy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-6ed73ebfcf5164e6086bbe3bc4a54115036b7d819dafb6c7aa9e59c678b65d7a3
container_end_page
container_issue
container_start_page 111443
container_title Applied soft computing
container_volume 155
creator Stuchi, José Augusto
Canto, Natalia Gil
Attux, Romis Ribeiro de Faissol
Boccato, Levy
description Machine learning applied to computer vision and signal processing is achieving results comparable to the human brain due to the great improvements brought by deep neural networks (DNN). The majority of state-of-the-art architectures are DNN-related, but only a few explicitly explore the frequency domain to extract useful information and improve the results. This paper presents a new approach for exploring the Fourier transform of the input images, which is composed of trainable frequency filters that boost discriminative components in the spectrum. Additionally, we propose a cropping procedure to allow the network to learn both global and local spectral features of the image blocks. The proposed method proved to be competitive concerning well-known DNN architectures in the selected experiments, which involved texture classification, cataract detection, and retina image analysis, where there is a noticeable appeal for the frequency domain, with the advantage of being a lightweight model. •A new architecture for neural networks exploring the frequency domain is proposed.•Trainable frequency filters retrieve image discriminative features.•A block division scheme allows extracting local and global spectral features.•A frequency pooling technique reduces the model parameters and training time.•The proposed model reaches competitive results when compared to modern ConvNets.
doi_str_mv 10.1016/j.asoc.2024.111443
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_asoc_2024_111443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494624002175</els_id><sourcerecordid>S1568494624002175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-6ed73ebfcf5164e6086bbe3bc4a54115036b7d819dafb6c7aa9e59c678b65d7a3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVa-QIKd2I4jsakqoIhKbGBtje0xdZUmxQ6g3p5UZc3qz-aN_n-E3HJWcsbV3baEPLiyYpUoOedC1GdkxnVTFa3S_Hy6pdKFaIW6JFc5b9kEtZWekZcFDQk_v7B3h8IPO4g9hf0-DeA29CeOG9ohpB5shzTEbsSUaRgSjTv4QOo6yDmG6GCMQ39NLgJ0GW_-ck7eHx_elqti_fr0vFysC1dJPhYKfVOjDS5IrgQqppW1WFsnQArOJauVbbzmrYdglWsAWpStU422SvoG6jmpTn9dGnJOGMw-TX3SwXBmjjrM1hx1mKMOc9IxQfcnCKdm3xGTyS5Oq9HHhG40foj_4b-DtWpq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A frequency-domain approach with learnable filters for image classification</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Stuchi, José Augusto ; Canto, Natalia Gil ; Attux, Romis Ribeiro de Faissol ; Boccato, Levy</creator><creatorcontrib>Stuchi, José Augusto ; Canto, Natalia Gil ; Attux, Romis Ribeiro de Faissol ; Boccato, Levy</creatorcontrib><description>Machine learning applied to computer vision and signal processing is achieving results comparable to the human brain due to the great improvements brought by deep neural networks (DNN). The majority of state-of-the-art architectures are DNN-related, but only a few explicitly explore the frequency domain to extract useful information and improve the results. This paper presents a new approach for exploring the Fourier transform of the input images, which is composed of trainable frequency filters that boost discriminative components in the spectrum. Additionally, we propose a cropping procedure to allow the network to learn both global and local spectral features of the image blocks. The proposed method proved to be competitive concerning well-known DNN architectures in the selected experiments, which involved texture classification, cataract detection, and retina image analysis, where there is a noticeable appeal for the frequency domain, with the advantage of being a lightweight model. •A new architecture for neural networks exploring the frequency domain is proposed.•Trainable frequency filters retrieve image discriminative features.•A block division scheme allows extracting local and global spectral features.•A frequency pooling technique reduces the model parameters and training time.•The proposed model reaches competitive results when compared to modern ConvNets.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2024.111443</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep learning ; Fourier analysis ; Frequency filtering ; Image classification ; Machine learning</subject><ispartof>Applied soft computing, 2024-04, Vol.155, p.111443, Article 111443</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-6ed73ebfcf5164e6086bbe3bc4a54115036b7d819dafb6c7aa9e59c678b65d7a3</cites><orcidid>0000-0002-1451-7452 ; 0000-0001-9319-9829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Stuchi, José Augusto</creatorcontrib><creatorcontrib>Canto, Natalia Gil</creatorcontrib><creatorcontrib>Attux, Romis Ribeiro de Faissol</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><title>A frequency-domain approach with learnable filters for image classification</title><title>Applied soft computing</title><description>Machine learning applied to computer vision and signal processing is achieving results comparable to the human brain due to the great improvements brought by deep neural networks (DNN). The majority of state-of-the-art architectures are DNN-related, but only a few explicitly explore the frequency domain to extract useful information and improve the results. This paper presents a new approach for exploring the Fourier transform of the input images, which is composed of trainable frequency filters that boost discriminative components in the spectrum. Additionally, we propose a cropping procedure to allow the network to learn both global and local spectral features of the image blocks. The proposed method proved to be competitive concerning well-known DNN architectures in the selected experiments, which involved texture classification, cataract detection, and retina image analysis, where there is a noticeable appeal for the frequency domain, with the advantage of being a lightweight model. •A new architecture for neural networks exploring the frequency domain is proposed.•Trainable frequency filters retrieve image discriminative features.•A block division scheme allows extracting local and global spectral features.•A frequency pooling technique reduces the model parameters and training time.•The proposed model reaches competitive results when compared to modern ConvNets.</description><subject>Deep learning</subject><subject>Fourier analysis</subject><subject>Frequency filtering</subject><subject>Image classification</subject><subject>Machine learning</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVa-QIKd2I4jsakqoIhKbGBtje0xdZUmxQ6g3p5UZc3qz-aN_n-E3HJWcsbV3baEPLiyYpUoOedC1GdkxnVTFa3S_Hy6pdKFaIW6JFc5b9kEtZWekZcFDQk_v7B3h8IPO4g9hf0-DeA29CeOG9ohpB5shzTEbsSUaRgSjTv4QOo6yDmG6GCMQ39NLgJ0GW_-ck7eHx_elqti_fr0vFysC1dJPhYKfVOjDS5IrgQqppW1WFsnQArOJauVbbzmrYdglWsAWpStU422SvoG6jmpTn9dGnJOGMw-TX3SwXBmjjrM1hx1mKMOc9IxQfcnCKdm3xGTyS5Oq9HHhG40foj_4b-DtWpq</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Stuchi, José Augusto</creator><creator>Canto, Natalia Gil</creator><creator>Attux, Romis Ribeiro de Faissol</creator><creator>Boccato, Levy</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1451-7452</orcidid><orcidid>https://orcid.org/0000-0001-9319-9829</orcidid></search><sort><creationdate>202404</creationdate><title>A frequency-domain approach with learnable filters for image classification</title><author>Stuchi, José Augusto ; Canto, Natalia Gil ; Attux, Romis Ribeiro de Faissol ; Boccato, Levy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-6ed73ebfcf5164e6086bbe3bc4a54115036b7d819dafb6c7aa9e59c678b65d7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Fourier analysis</topic><topic>Frequency filtering</topic><topic>Image classification</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stuchi, José Augusto</creatorcontrib><creatorcontrib>Canto, Natalia Gil</creatorcontrib><creatorcontrib>Attux, Romis Ribeiro de Faissol</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><collection>CrossRef</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stuchi, José Augusto</au><au>Canto, Natalia Gil</au><au>Attux, Romis Ribeiro de Faissol</au><au>Boccato, Levy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A frequency-domain approach with learnable filters for image classification</atitle><jtitle>Applied soft computing</jtitle><date>2024-04</date><risdate>2024</risdate><volume>155</volume><spage>111443</spage><pages>111443-</pages><artnum>111443</artnum><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>Machine learning applied to computer vision and signal processing is achieving results comparable to the human brain due to the great improvements brought by deep neural networks (DNN). The majority of state-of-the-art architectures are DNN-related, but only a few explicitly explore the frequency domain to extract useful information and improve the results. This paper presents a new approach for exploring the Fourier transform of the input images, which is composed of trainable frequency filters that boost discriminative components in the spectrum. Additionally, we propose a cropping procedure to allow the network to learn both global and local spectral features of the image blocks. The proposed method proved to be competitive concerning well-known DNN architectures in the selected experiments, which involved texture classification, cataract detection, and retina image analysis, where there is a noticeable appeal for the frequency domain, with the advantage of being a lightweight model. •A new architecture for neural networks exploring the frequency domain is proposed.•Trainable frequency filters retrieve image discriminative features.•A block division scheme allows extracting local and global spectral features.•A frequency pooling technique reduces the model parameters and training time.•The proposed model reaches competitive results when compared to modern ConvNets.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2024.111443</doi><orcidid>https://orcid.org/0000-0002-1451-7452</orcidid><orcidid>https://orcid.org/0000-0001-9319-9829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4946
ispartof Applied soft computing, 2024-04, Vol.155, p.111443, Article 111443
issn 1568-4946
1872-9681
language eng
recordid cdi_crossref_primary_10_1016_j_asoc_2024_111443
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Deep learning
Fourier analysis
Frequency filtering
Image classification
Machine learning
title A frequency-domain approach with learnable filters for image classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20frequency-domain%20approach%20with%20learnable%20filters%20for%20image%20classification&rft.jtitle=Applied%20soft%20computing&rft.au=Stuchi,%20Jos%C3%A9%20Augusto&rft.date=2024-04&rft.volume=155&rft.spage=111443&rft.pages=111443-&rft.artnum=111443&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2024.111443&rft_dat=%3Celsevier_cross%3ES1568494624002175%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-6ed73ebfcf5164e6086bbe3bc4a54115036b7d819dafb6c7aa9e59c678b65d7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true