Loading…
Overall aerodynamic performance of the airfoils with different amplitudes via a fuzzy decision making based Taguchi methodology
In this study, the overall aerodynamic performance of the airfoils with variable amplitude geometric structure for lift-type vertical axis wind turbine has been analyzed and optimized using Fuzzy Analytic Hierarchy Process (AHP)-Fuzzy COmbinative Distance-based Assessment (CODAS) based on Taguchi Me...
Saved in:
Published in: | Applied soft computing 2024-11, Vol.165, p.112057, Article 112057 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the overall aerodynamic performance of the airfoils with variable amplitude geometric structure for lift-type vertical axis wind turbine has been analyzed and optimized using Fuzzy Analytic Hierarchy Process (AHP)-Fuzzy COmbinative Distance-based Assessment (CODAS) based on Taguchi Method. In the design of the experiment, leading edge (LE) tubercle airfoil models, Reynolds number, and angle of attack are utilized as the control factors. Drag, lift, and lift to drag ratio performances by comparing the airfoils according to the baseline model are calculated and the combination of these performances is considered as the overall aerodynamic performance response. The experiments are carried out according to the orthogonal matrix L18. Since the importance of each response is different on lift-type vertical axis wind turbines, the importance weights of these responses were obtained by Fuzzy AHP according to the evaluation of the decision maker. Multiple responses are converted into a single response (the overall aerodynamic performance) via Fuzzy CODAS which enables to model uncertainty in order to overcome the physical effects that may arise in experiments. Thereby, a multi objective Taguchi methodology was applied for the overall aerodynamic performance with a novel Fuzzy logic based multi criteria decision analysis approach. As a result, Model-4, having tubercle design parameters of amplitude of 0.025c and 0.0125c and wavelength of 0.5c and 0.125c, was found to have the best performance with the novel Taguchi approach, which saves time and cost. In addition, it has been determined that the airfoils, Reynolds number and angle of attack are significant and what level of contribution to the overall aerodynamic performance. At this point, the most important control factor has emerged as the angle of attack.
[Display omitted]
•Overall performance of airfoils was determined by using Taguchi, Fuzzy AHP-CODAS.•The hybrid fuzzy decision making based Taguchi approach was proposed for the first time.•The importance weights of the responses were obtained by Fuzzy AHP.•The most successful wing model for overall aerodynamic performance was Model 4.•Most influential factor on overall performance was determined as angle of attack. |
---|---|
ISSN: | 1568-4946 |
DOI: | 10.1016/j.asoc.2024.112057 |