Loading…
Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study
The present study reveals the features of ionospheric parameters variations during the geomagnetic storm of September 7–8, 2017. In particular, parameters of vertical (foF2, foEs) and oblique ionospheric sounding (MOF, modes), absorption level, Total Electron Content (TEC) and particle fluxes at hig...
Saved in:
Published in: | Advances in space research 2019-01, Vol.63 (1), p.239-256 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study reveals the features of ionospheric parameters variations during the geomagnetic storm of September 7–8, 2017. In particular, parameters of vertical (foF2, foEs) and oblique ionospheric sounding (MOF, modes), absorption level, Total Electron Content (TEC) and particle fluxes at high altitudes were under analysis. The storm was characterized by two Dst-index mimima and can be considered as a sequence of two storms: first - with Dstmin = −142 nT at 02 UT on September 8th and second - with Dstmin = −122 nT and at 15 UT on September 8th. It was found that these two storms had different impacts on the ionosphere and HF propagation at mid- and high-latitudes of Northern Hemisphere. The signals of vertical and oblique ionospheric sounding were present in all ionograms before the first storm. Further, at the maximum of the first storm these signals were totally absorbed. Then, before the second storm and during its maximum the signals were detected again in the ionograms due to the low absorption. GOES satellite data showed the significant burst of electrons and protons only during the first storm and small particle fluxes - during the second storm. This feature was also confirmed with GPS data: TEC increased during the first storm and decreased during the second storm. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2018.07.016 |