Loading…

Multiple-impulse orbital maneuver with limited observation window

This paper proposes a solution for multiple-impulse orbital maneuvers near circular orbits for special cases where orbital observations are not globally available and the spacecraft is being observed through a limited window from a ground or a space-based station. The current study is particularly u...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2020-08, Vol.66 (4), p.992-1000
Main Authors: Shakouri, Amir, Pourtakdoust, Seid H., Sayanjali, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a solution for multiple-impulse orbital maneuvers near circular orbits for special cases where orbital observations are not globally available and the spacecraft is being observed through a limited window from a ground or a space-based station. The current study is particularly useful for small private launching companies with limited access to global observations around the Earth and for orbital maneuvers around other planets for which the orbital observations are limited to the in situ equipment. An appropriate cost function is introduced for the sake of minimizing the total control/impulse effort as well as the orbital uncertainty. It is subsequently proved that for a circle-to-circle maneuver, the optimization problem is quasi-convex with respect to the design variables. For near circular trajectories the same cost function is minimized via a gradient based optimization algorithm in order to provide a sub-optimal solution that is efficient both with respect to energy effort and orbital uncertainty. As a relevant case study, a four-impulse orbital maneuver between circular orbits under Mars gravitation is simulated and analyzed to demonstrate the effectiveness of the proposed algorithm.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2020.05.006