Loading…
Variability and climatology of precipitable water vapor from 12-year GPS observations in Taiwan
Because of global warming, global sea levels have risen, the frequency of drought in Taiwan is much more frequent in winter and spring, and rainfall tends to concentrate in summer. The probability of disaster-type weather has also increased significantly. Estimating precipitable water vapor (PWV) th...
Saved in:
Published in: | Advances in space research 2021-04, Vol.67 (8), p.2333-2346 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because of global warming, global sea levels have risen, the frequency of drought in Taiwan is much more frequent in winter and spring, and rainfall tends to concentrate in summer. The probability of disaster-type weather has also increased significantly. Estimating precipitable water vapor (PWV) through GPS signals, related studies and analyses of weather conditions, and the effective use of meteorological forecasts have been valued by many meteorological research organizations and officials. In this study, PWV data from 2006 to 2017 and rainfall data were used for long-term harmonic analysis. PWV data calculated by ECMWF (ECMWF-PWV) and PWV data calculated by GPS (GPS-PWV) were subjected to regression analysis to verify the reliability of the GPS-PWV data. The research results show that GPS-PWV and ECMWF-PWV have extremely high correlations; however, the climatic characteristics of some regions and the high spatial resolution of GPS-PWV are able to accurately calculate the high topographic relief of small areas. It is judged that the GPS-PWV is more accurate than the ECMWF-PWV. It is worth noting that the PWV trend of the regions during the 6-year-before period has not changed very much, but the rainfall trend has changed obviously. Except for the eastern region, most of the regions show a decreasing trend year by year. More long-term observations are still needed to prove whether this phenomenon relates to global warming. Long-term rainfall analysis showed that the topography blocked water vapor to the western, southern, and mountainous regions, making them distinctly wet or dry. The harmonic curve showed great consistency with the peaks of PWV and rainfall. However, in the northern and eastern parts of the windward side, the time when maximum rainfall occurred each year may be one month later than the time when the maximum PWV value occurred each year. The reason for this difference is likely to be a decrease in the number of autumn typhoons, resulting in a nearly one-month difference in PWV peaks and rainfall peaks. Finally, we analyzed the linear trend of GPS-PWV and temperature for all regions in Taiwan, and found that annual increasing rate of GPS-PWV and temperature of all regions are within 0.4–0.5 mm/year and 0.04–0.11 C°/year, respectively. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2021.01.021 |