Loading…
Long-period meteor radar temperature variations over Collm (51°N, 13°E) and Kazan (56°N, 49°E)
We have estimated temperatures from meteor radar measurements using the gradient method and the full width at half maximum method over Kazan (56°N 49°E) and Collm (51°N, 13°E). The time series cover the period 2016–2019. The temperature gradient model is constructed from SABER temperature observatio...
Saved in:
Published in: | Advances in space research 2021-05, Vol.67 (10), p.3250-3259 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have estimated temperatures from meteor radar measurements using the gradient method and the full width at half maximum method over Kazan (56°N 49°E) and Collm (51°N, 13°E). The time series cover the period 2016–2019. The temperature gradient model is constructed from SABER temperature observations. We demonstrate that annual mean, amplitudes and phases of the annual and semiannual oscillations of the radar temperatures are close to those of the MLS and SABER temperatures. The annual mean temperatures over Kazan and Collm differ non-significantly. The seasonal variability of the radar temperature is mostly due to the annual cycle which tends to grow with latitude. The gradient method produces temperatures which agree with the SABER temperatures better than with the MLS ones. The harmonics of the annual oscillations from periods of 73 days up to periods of about 40 days are the most significant day-to-day temperature oscillations and have zonal wavenumber zero. Their periods and phases are in good correspondence with those of the MLS and SABER ones. We also show some results which demonstrate that at 56°N the FWHM method is not as robust as the gradient method. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2021.02.014 |