Loading…

Impacts of the PAH size and the radiation intensity on the IR features of illuminated dust within the reflection nebulae

Interstellar dust grains are illuminated in the reflection nebulae. Under conditions of the PAH size and the intensity of the interstellar radiation field, we follow their impact on the PAH aromatic infrared bands using the numericalDustEM code. For a dust model consisting of PAH, amorphous C and am...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2021-06, Vol.67 (12), p.4222-4237
Main Authors: Gadallah, Kamel A.K., Ali, Abdallah A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interstellar dust grains are illuminated in the reflection nebulae. Under conditions of the PAH size and the intensity of the interstellar radiation field, we follow their impact on the PAH aromatic infrared bands using the numericalDustEM code. For a dust model consisting of PAH, amorphous C and amorphous silicate, the PAH size varies in a range from 0.31 to 4.9 nm while the radiation intensity varies by a scale factor from 0.1 to 104. Various trends of the results show the effect of varying both the PAH size and the radiation intensity on the strength of the aromatic mid-IR bands. Through small PAH sizes less than 0.7 nm, the grain temperature distribution of PAHs shows a small variation within 2–3 K at low radiation intensity while it increases to 15 and 8 K for PAH0 and PAH+, respectively, at higher radiation intensity. In final the variability in these results reveals the evolution of the dust grains under the physical space conditions of the reflection nebulae. In the mid-IR region, the contributions of PAH0 and PAH+ in the total SED intensity agree with the proportions of these PAHs observed in some reflection nebulae having higher radiation intensities.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2021.02.025