Loading…
An integrated optimum 3D transition orbit design procedure with guidance for a spacecraft
In this paper, an integrated optimal flight plan with a guidance plan in a general transfer orbit is considered. Due to the need to simultaneously reduce energy consumption and flight time in some space missions, the spacecraft trajectory is optimized based on two criteria to minimize fuel consumpti...
Saved in:
Published in: | Advances in space research 2021-10, Vol.68 (7), p.2742-2751 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, an integrated optimal flight plan with a guidance plan in a general transfer orbit is considered. Due to the need to simultaneously reduce energy consumption and flight time in some space missions, the spacecraft trajectory is optimized based on two criteria to minimize fuel consumption and flight time in the orbital transfer process. For this purpose, the total velocity impulse on both sides of the transition orbit and the elapsed time are defined as the criteria of the objective function which includes the spacecraft’s insertion conditions and orbital parameters related to the shape of the trajectory. The optimal transition (coasting) trajectory is then obtained using the multi-objective genetic algorithm (MOGA) search method. Subsequently, the velocity-to-be-gained guidance steering scheme is integrated to track the trajectory onboard and reach the final orbit. The numerical results of the proposed algorithm are extracted in three case studies and compared with other references that show its ability to find the optimal transfer. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2021.05.033 |