Loading…

Reliability of satellite-based precipitation products in capturing extreme precipitation indices over Iran

The goal of this study is to assess the performance of four widely-used satellite precipitation products in capturing extreme precipitation indices across Iran over the period 2001–2018; these products include GPM IMERG (Integrated Multi-Satellite Retrievals for Global Precipitation Measurement), TR...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2023-02, Vol.71 (3), p.1451-1472
Main Authors: Keikhosravi-Kiany, Mohammad Sadegh, Masoodian, Seyed Abolfazl, Balling Jr, Robert C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this study is to assess the performance of four widely-used satellite precipitation products in capturing extreme precipitation indices across Iran over the period 2001–2018; these products include GPM IMERG (Integrated Multi-Satellite Retrievals for Global Precipitation Measurement), TRMM 3B42 (Tropical Rainfall Measuring Mission), CHIRPS (Climate Hazards Center InfraRed Precipitation with Station data), and PERSIANN-CDR (Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). For this aim, a national gridded precipitation dataset was developed using a dense network of rain gauges as a reference dataset. The results suggest that the IMERG product outperforms the other three precipitation products in capturing extreme precipitation indices both temporally and spatially. TRMM 3B42 data show promising results in identifying many extreme indices, while the CHIRPS and PERSIANN-CDR products show less performance in accurately generating many of the extreme precipitation indices.
ISSN:0273-1177
DOI:10.1016/j.asr.2022.10.003