Loading…

Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints

A dynamic model for fiber reinforced composite (FRC) plates with polyurea coating (PC) under four-edge elastic constraints is proposed to investigate vibro-impact resistant performance. Firstly, based on the first order shear deformation theory together with the Rayleigh-Ritz method, Duhamel integra...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace science and technology 2022-02, Vol.121, p.107196, Article 107196
Main Authors: Li, Hui, Wang, Dongsheng, Xiao, Zhengyang, Qin, Zhaoye, Xiong, Jian, Han, Qingkai, Wang, Xiangping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3
cites cdi_FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3
container_end_page
container_issue
container_start_page 107196
container_title Aerospace science and technology
container_volume 121
creator Li, Hui
Wang, Dongsheng
Xiao, Zhengyang
Qin, Zhaoye
Xiong, Jian
Han, Qingkai
Wang, Xiangping
description A dynamic model for fiber reinforced composite (FRC) plates with polyurea coating (PC) under four-edge elastic constraints is proposed to investigate vibro-impact resistant performance. Firstly, based on the first order shear deformation theory together with the Rayleigh-Ritz method, Duhamel integral approach and Simpson's rule, the natural frequencies and dynamic responses of PC-FRC plates subjected to an impulse excitation load are solved, which paves the way to obtaining the key index ‘dynamic stiffness’ for evaluating anti-vibration capability. Furthermore, according to the Hamilton principle, the equilibrium equations of PC-FRC plates under low velocity impact excitations are derived. By employing the Hertz contact law to calculate the impact contact force, the delamination threshold load is defined to obtain the other key index ‘impact damage area’ for estimating the impact resistance performance. Finally, both numerical and experimental results taking into account classic and elastic constraints are employed to validate the model developed here. The parametric study is also performed to provide practical guidance for achieving a better vibro-impact resistance of such composite structures.
doi_str_mv 10.1016/j.ast.2021.107196
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ast_2021_107196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963821007069</els_id><sourcerecordid>S1270963821007069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG_5Al2TtE0bPMniP1jwoueQJtN1lm5Tkriy4Ic3Sz17mpn3eMPjR8gtZyvOuLzbrUxMK8EEz3fDlTwjCy6FLErB1XneRcMKJcv2klzFuGOMCVWJBfl5HQ8QE25NQj9S39MDdsEXuJ-MTTRAxJjMaOFk9dhByBqOvQ8WHLV-P_mICeg0mASRfmP6pJMfjl8BTLbz13E7qzDkhmizOMYUDI4pXpOL3gwRbv7mknw8Pb6vX4rN2_Pr-mFTWKGaVLSSN6pSrO4YF7bsTF_VvK5aK1pjbG3LmrdSQd05WXFXOdG6UknnGgYZgYVySfj81wYfY4BeTwH3Jhw1Z_qET-90LqdP-PSML2fu5wzkYgeEoKNFyCAcBrBJO4__pH8BtkN7ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints</title><source>ScienceDirect Freedom Collection</source><creator>Li, Hui ; Wang, Dongsheng ; Xiao, Zhengyang ; Qin, Zhaoye ; Xiong, Jian ; Han, Qingkai ; Wang, Xiangping</creator><creatorcontrib>Li, Hui ; Wang, Dongsheng ; Xiao, Zhengyang ; Qin, Zhaoye ; Xiong, Jian ; Han, Qingkai ; Wang, Xiangping</creatorcontrib><description>A dynamic model for fiber reinforced composite (FRC) plates with polyurea coating (PC) under four-edge elastic constraints is proposed to investigate vibro-impact resistant performance. Firstly, based on the first order shear deformation theory together with the Rayleigh-Ritz method, Duhamel integral approach and Simpson's rule, the natural frequencies and dynamic responses of PC-FRC plates subjected to an impulse excitation load are solved, which paves the way to obtaining the key index ‘dynamic stiffness’ for evaluating anti-vibration capability. Furthermore, according to the Hamilton principle, the equilibrium equations of PC-FRC plates under low velocity impact excitations are derived. By employing the Hertz contact law to calculate the impact contact force, the delamination threshold load is defined to obtain the other key index ‘impact damage area’ for estimating the impact resistance performance. Finally, both numerical and experimental results taking into account classic and elastic constraints are employed to validate the model developed here. The parametric study is also performed to provide practical guidance for achieving a better vibro-impact resistance of such composite structures.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2021.107196</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Elastic constraints ; Fiber-reinforced composite plate ; Polyurea coating ; Vibro-impact resistance</subject><ispartof>Aerospace science and technology, 2022-02, Vol.121, p.107196, Article 107196</ispartof><rights>2021 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3</citedby><cites>FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3</cites><orcidid>0000-0003-3892-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Xiao, Zhengyang</creatorcontrib><creatorcontrib>Qin, Zhaoye</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Han, Qingkai</creatorcontrib><creatorcontrib>Wang, Xiangping</creatorcontrib><title>Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints</title><title>Aerospace science and technology</title><description>A dynamic model for fiber reinforced composite (FRC) plates with polyurea coating (PC) under four-edge elastic constraints is proposed to investigate vibro-impact resistant performance. Firstly, based on the first order shear deformation theory together with the Rayleigh-Ritz method, Duhamel integral approach and Simpson's rule, the natural frequencies and dynamic responses of PC-FRC plates subjected to an impulse excitation load are solved, which paves the way to obtaining the key index ‘dynamic stiffness’ for evaluating anti-vibration capability. Furthermore, according to the Hamilton principle, the equilibrium equations of PC-FRC plates under low velocity impact excitations are derived. By employing the Hertz contact law to calculate the impact contact force, the delamination threshold load is defined to obtain the other key index ‘impact damage area’ for estimating the impact resistance performance. Finally, both numerical and experimental results taking into account classic and elastic constraints are employed to validate the model developed here. The parametric study is also performed to provide practical guidance for achieving a better vibro-impact resistance of such composite structures.</description><subject>Elastic constraints</subject><subject>Fiber-reinforced composite plate</subject><subject>Polyurea coating</subject><subject>Vibro-impact resistance</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG_5Al2TtE0bPMniP1jwoueQJtN1lm5Tkriy4Ic3Sz17mpn3eMPjR8gtZyvOuLzbrUxMK8EEz3fDlTwjCy6FLErB1XneRcMKJcv2klzFuGOMCVWJBfl5HQ8QE25NQj9S39MDdsEXuJ-MTTRAxJjMaOFk9dhByBqOvQ8WHLV-P_mICeg0mASRfmP6pJMfjl8BTLbz13E7qzDkhmizOMYUDI4pXpOL3gwRbv7mknw8Pb6vX4rN2_Pr-mFTWKGaVLSSN6pSrO4YF7bsTF_VvK5aK1pjbG3LmrdSQd05WXFXOdG6UknnGgYZgYVySfj81wYfY4BeTwH3Jhw1Z_qET-90LqdP-PSML2fu5wzkYgeEoKNFyCAcBrBJO4__pH8BtkN7ag</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Li, Hui</creator><creator>Wang, Dongsheng</creator><creator>Xiao, Zhengyang</creator><creator>Qin, Zhaoye</creator><creator>Xiong, Jian</creator><creator>Han, Qingkai</creator><creator>Wang, Xiangping</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3892-4594</orcidid></search><sort><creationdate>202202</creationdate><title>Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints</title><author>Li, Hui ; Wang, Dongsheng ; Xiao, Zhengyang ; Qin, Zhaoye ; Xiong, Jian ; Han, Qingkai ; Wang, Xiangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Elastic constraints</topic><topic>Fiber-reinforced composite plate</topic><topic>Polyurea coating</topic><topic>Vibro-impact resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Xiao, Zhengyang</creatorcontrib><creatorcontrib>Qin, Zhaoye</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Han, Qingkai</creatorcontrib><creatorcontrib>Wang, Xiangping</creatorcontrib><collection>CrossRef</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Wang, Dongsheng</au><au>Xiao, Zhengyang</au><au>Qin, Zhaoye</au><au>Xiong, Jian</au><au>Han, Qingkai</au><au>Wang, Xiangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints</atitle><jtitle>Aerospace science and technology</jtitle><date>2022-02</date><risdate>2022</risdate><volume>121</volume><spage>107196</spage><pages>107196-</pages><artnum>107196</artnum><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>A dynamic model for fiber reinforced composite (FRC) plates with polyurea coating (PC) under four-edge elastic constraints is proposed to investigate vibro-impact resistant performance. Firstly, based on the first order shear deformation theory together with the Rayleigh-Ritz method, Duhamel integral approach and Simpson's rule, the natural frequencies and dynamic responses of PC-FRC plates subjected to an impulse excitation load are solved, which paves the way to obtaining the key index ‘dynamic stiffness’ for evaluating anti-vibration capability. Furthermore, according to the Hamilton principle, the equilibrium equations of PC-FRC plates under low velocity impact excitations are derived. By employing the Hertz contact law to calculate the impact contact force, the delamination threshold load is defined to obtain the other key index ‘impact damage area’ for estimating the impact resistance performance. Finally, both numerical and experimental results taking into account classic and elastic constraints are employed to validate the model developed here. The parametric study is also performed to provide practical guidance for achieving a better vibro-impact resistance of such composite structures.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2021.107196</doi><orcidid>https://orcid.org/0000-0003-3892-4594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2022-02, Vol.121, p.107196, Article 107196
issn 1270-9638
1626-3219
language eng
recordid cdi_crossref_primary_10_1016_j_ast_2021_107196
source ScienceDirect Freedom Collection
subjects Elastic constraints
Fiber-reinforced composite plate
Polyurea coating
Vibro-impact resistance
title Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20vibro-impact%20resistance%20of%20fiber%20reinforced%20composite%20plates%20with%20polyurea%20coating%20with%20elastic%20constraints&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Li,%20Hui&rft.date=2022-02&rft.volume=121&rft.spage=107196&rft.pages=107196-&rft.artnum=107196&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2021.107196&rft_dat=%3Celsevier_cross%3ES1270963821007069%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-861794905b012c3baf451548c28aac5c351869e5bd641d4d28d396dd70e162ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true