Loading…

Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes

Low-Reynolds-number high-lift airfoil design is critical to the performance of unmanned aerial vehicles (UAV). However, since laminar-to-turbulent transition dominates the aerodynamic performance of low-Reynolds-number airfoils and the transition position may exhibit an abrupt change even with a sma...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace science and technology 2022-02, Vol.121, p.107309, Article 107309
Main Authors: Li, Jichao, Zhang, Mengqi, Tay, Chien Ming Jonathan, Liu, Ningyu, Cui, Yongdong, Chew, Siou Chye, Khoo, Boo Cheong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853
cites cdi_FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853
container_end_page
container_issue
container_start_page 107309
container_title Aerospace science and technology
container_volume 121
creator Li, Jichao
Zhang, Mengqi
Tay, Chien Ming Jonathan
Liu, Ningyu
Cui, Yongdong
Chew, Siou Chye
Khoo, Boo Cheong
description Low-Reynolds-number high-lift airfoil design is critical to the performance of unmanned aerial vehicles (UAV). However, since laminar-to-turbulent transition dominates the aerodynamic performance of low-Reynolds-number airfoils and the transition position may exhibit an abrupt change even with a small geometric deformation, aerodynamic coefficient functions become discontinuous in this regime, which brings significant difficulties to the application of conventional aerodynamic design optimization methods. To efficiently perform low-Reynolds-number airfoil design, we present a tailored airfoil modal parameterization method, which reasonably defines the desired design space using deep-learning techniques. Coupled with surrogate-based optimization, the proposed method has shown to be effective and efficient in low-Reynolds-number high-lift airfoil design. It is found that it is necessary to consider laminar-to-turbulent transition and to perform multi-point optimization in practical low-Reynolds-number airfoil design. The maximal lift coefficient is an active constraint influencing the selection of the optimal cruise lift coefficient. The results show the complexity of low-Reynolds-number high-lift airfoil design and highlight the significance of the proposed method in the improvement of optimization efficiency.
doi_str_mv 10.1016/j.ast.2021.107309
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ast_2021_107309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963821008191</els_id><sourcerecordid>S1270963821008191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853</originalsourceid><addsrcrecordid>eNp9kN1KAzEQRoMoWKsP4N2-QGqSzSYbvJLiHxQE0euYTWZLym5Skq1Sn96U6q1X8w3D-RgOQteULCih4mazMHlaMMJo2WVN1AmaUcEErhlVpyUzSbASdXuOLnLeEEKY4myGPlbxC7_CPsTBZRx2YwepMj710Q-Vg-zXoYrbyY_-20w-hmqXfViXC2zxACaFsuHOZHDVZPwQUwl_-BhLwSU6682Q4ep3ztH7w_3b8gmvXh6fl3crbJmSE1Zdwx0FJqExvAZGnRRWOMk4NZzZWlrTib6RtuudtBxEy7ggjRJAHWnbpp4jeuy1KeacoNfb5EeT9poSfVCkN7oo0gdF-qioMLdHBspjnx6SztZDsOB8AjtpF_0_9A9r7HCZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes</title><source>ScienceDirect Journals</source><creator>Li, Jichao ; Zhang, Mengqi ; Tay, Chien Ming Jonathan ; Liu, Ningyu ; Cui, Yongdong ; Chew, Siou Chye ; Khoo, Boo Cheong</creator><creatorcontrib>Li, Jichao ; Zhang, Mengqi ; Tay, Chien Ming Jonathan ; Liu, Ningyu ; Cui, Yongdong ; Chew, Siou Chye ; Khoo, Boo Cheong</creatorcontrib><description>Low-Reynolds-number high-lift airfoil design is critical to the performance of unmanned aerial vehicles (UAV). However, since laminar-to-turbulent transition dominates the aerodynamic performance of low-Reynolds-number airfoils and the transition position may exhibit an abrupt change even with a small geometric deformation, aerodynamic coefficient functions become discontinuous in this regime, which brings significant difficulties to the application of conventional aerodynamic design optimization methods. To efficiently perform low-Reynolds-number airfoil design, we present a tailored airfoil modal parameterization method, which reasonably defines the desired design space using deep-learning techniques. Coupled with surrogate-based optimization, the proposed method has shown to be effective and efficient in low-Reynolds-number high-lift airfoil design. It is found that it is necessary to consider laminar-to-turbulent transition and to perform multi-point optimization in practical low-Reynolds-number airfoil design. The maximal lift coefficient is an active constraint influencing the selection of the optimal cruise lift coefficient. The results show the complexity of low-Reynolds-number high-lift airfoil design and highlight the significance of the proposed method in the improvement of optimization efficiency.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2021.107309</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Aerodynamic shape optimization ; Deep learning ; Geometric filtering ; Low-Reynolds-number airfoil ; Modal parameterization ; UAV</subject><ispartof>Aerospace science and technology, 2022-02, Vol.121, p.107309, Article 107309</ispartof><rights>2021 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853</citedby><cites>FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853</cites><orcidid>0000-0002-8354-7129 ; 0000-0003-3052-5337 ; 0000-0003-2541-2557 ; 0000-0003-4710-4598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Jichao</creatorcontrib><creatorcontrib>Zhang, Mengqi</creatorcontrib><creatorcontrib>Tay, Chien Ming Jonathan</creatorcontrib><creatorcontrib>Liu, Ningyu</creatorcontrib><creatorcontrib>Cui, Yongdong</creatorcontrib><creatorcontrib>Chew, Siou Chye</creatorcontrib><creatorcontrib>Khoo, Boo Cheong</creatorcontrib><title>Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes</title><title>Aerospace science and technology</title><description>Low-Reynolds-number high-lift airfoil design is critical to the performance of unmanned aerial vehicles (UAV). However, since laminar-to-turbulent transition dominates the aerodynamic performance of low-Reynolds-number airfoils and the transition position may exhibit an abrupt change even with a small geometric deformation, aerodynamic coefficient functions become discontinuous in this regime, which brings significant difficulties to the application of conventional aerodynamic design optimization methods. To efficiently perform low-Reynolds-number airfoil design, we present a tailored airfoil modal parameterization method, which reasonably defines the desired design space using deep-learning techniques. Coupled with surrogate-based optimization, the proposed method has shown to be effective and efficient in low-Reynolds-number high-lift airfoil design. It is found that it is necessary to consider laminar-to-turbulent transition and to perform multi-point optimization in practical low-Reynolds-number airfoil design. The maximal lift coefficient is an active constraint influencing the selection of the optimal cruise lift coefficient. The results show the complexity of low-Reynolds-number high-lift airfoil design and highlight the significance of the proposed method in the improvement of optimization efficiency.</description><subject>Aerodynamic shape optimization</subject><subject>Deep learning</subject><subject>Geometric filtering</subject><subject>Low-Reynolds-number airfoil</subject><subject>Modal parameterization</subject><subject>UAV</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQRoMoWKsP4N2-QGqSzSYbvJLiHxQE0euYTWZLym5Skq1Sn96U6q1X8w3D-RgOQteULCih4mazMHlaMMJo2WVN1AmaUcEErhlVpyUzSbASdXuOLnLeEEKY4myGPlbxC7_CPsTBZRx2YwepMj710Q-Vg-zXoYrbyY_-20w-hmqXfViXC2zxACaFsuHOZHDVZPwQUwl_-BhLwSU6682Q4ep3ztH7w_3b8gmvXh6fl3crbJmSE1Zdwx0FJqExvAZGnRRWOMk4NZzZWlrTib6RtuudtBxEy7ggjRJAHWnbpp4jeuy1KeacoNfb5EeT9poSfVCkN7oo0gdF-qioMLdHBspjnx6SztZDsOB8AjtpF_0_9A9r7HCZ</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Li, Jichao</creator><creator>Zhang, Mengqi</creator><creator>Tay, Chien Ming Jonathan</creator><creator>Liu, Ningyu</creator><creator>Cui, Yongdong</creator><creator>Chew, Siou Chye</creator><creator>Khoo, Boo Cheong</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8354-7129</orcidid><orcidid>https://orcid.org/0000-0003-3052-5337</orcidid><orcidid>https://orcid.org/0000-0003-2541-2557</orcidid><orcidid>https://orcid.org/0000-0003-4710-4598</orcidid></search><sort><creationdate>202202</creationdate><title>Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes</title><author>Li, Jichao ; Zhang, Mengqi ; Tay, Chien Ming Jonathan ; Liu, Ningyu ; Cui, Yongdong ; Chew, Siou Chye ; Khoo, Boo Cheong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamic shape optimization</topic><topic>Deep learning</topic><topic>Geometric filtering</topic><topic>Low-Reynolds-number airfoil</topic><topic>Modal parameterization</topic><topic>UAV</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jichao</creatorcontrib><creatorcontrib>Zhang, Mengqi</creatorcontrib><creatorcontrib>Tay, Chien Ming Jonathan</creatorcontrib><creatorcontrib>Liu, Ningyu</creatorcontrib><creatorcontrib>Cui, Yongdong</creatorcontrib><creatorcontrib>Chew, Siou Chye</creatorcontrib><creatorcontrib>Khoo, Boo Cheong</creatorcontrib><collection>CrossRef</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jichao</au><au>Zhang, Mengqi</au><au>Tay, Chien Ming Jonathan</au><au>Liu, Ningyu</au><au>Cui, Yongdong</au><au>Chew, Siou Chye</au><au>Khoo, Boo Cheong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes</atitle><jtitle>Aerospace science and technology</jtitle><date>2022-02</date><risdate>2022</risdate><volume>121</volume><spage>107309</spage><pages>107309-</pages><artnum>107309</artnum><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>Low-Reynolds-number high-lift airfoil design is critical to the performance of unmanned aerial vehicles (UAV). However, since laminar-to-turbulent transition dominates the aerodynamic performance of low-Reynolds-number airfoils and the transition position may exhibit an abrupt change even with a small geometric deformation, aerodynamic coefficient functions become discontinuous in this regime, which brings significant difficulties to the application of conventional aerodynamic design optimization methods. To efficiently perform low-Reynolds-number airfoil design, we present a tailored airfoil modal parameterization method, which reasonably defines the desired design space using deep-learning techniques. Coupled with surrogate-based optimization, the proposed method has shown to be effective and efficient in low-Reynolds-number high-lift airfoil design. It is found that it is necessary to consider laminar-to-turbulent transition and to perform multi-point optimization in practical low-Reynolds-number airfoil design. The maximal lift coefficient is an active constraint influencing the selection of the optimal cruise lift coefficient. The results show the complexity of low-Reynolds-number high-lift airfoil design and highlight the significance of the proposed method in the improvement of optimization efficiency.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2021.107309</doi><orcidid>https://orcid.org/0000-0002-8354-7129</orcidid><orcidid>https://orcid.org/0000-0003-3052-5337</orcidid><orcidid>https://orcid.org/0000-0003-2541-2557</orcidid><orcidid>https://orcid.org/0000-0003-4710-4598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2022-02, Vol.121, p.107309, Article 107309
issn 1270-9638
1626-3219
language eng
recordid cdi_crossref_primary_10_1016_j_ast_2021_107309
source ScienceDirect Journals
subjects Aerodynamic shape optimization
Deep learning
Geometric filtering
Low-Reynolds-number airfoil
Modal parameterization
UAV
title Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Reynolds-number%20airfoil%20design%20optimization%20using%20deep-learning-based%20tailored%20airfoil%20modes&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Li,%20Jichao&rft.date=2022-02&rft.volume=121&rft.spage=107309&rft.pages=107309-&rft.artnum=107309&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2021.107309&rft_dat=%3Celsevier_cross%3ES1270963821008191%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-9b54d1e27e5a43e21d76c6d7241a42c37cab6f57cbfd7c4e682460596e1d08853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true