Loading…

Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM

•Holistic thermal canopy analysis, enabling stress assessment.•Compact YOLOv8-C model for faster object detection.•Integrating YOLOv8-C and FastSAM for whole canopy thermal image segmentation of tomato plants.•Masked ROI for precise temperature extraction, enabling targeted analysis of plant regions...

Full description

Saved in:
Bibliographic Details
Published in:Smart agricultural technology 2025-01, p.100806, Article 100806
Main Authors: P, Hemamalini, MK, Chandraprakash, RH, Laxman, C, Rathinakumari, G, Senthil Kumaran, K, Suneetha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1436-6f3d6799785f32369e001a8ff7ea86f98ae106ac9cd49758a58c28206d6ce4af3
container_end_page
container_issue
container_start_page 100806
container_title Smart agricultural technology
container_volume
creator P, Hemamalini
MK, Chandraprakash
RH, Laxman
C, Rathinakumari
G, Senthil Kumaran
K, Suneetha
description •Holistic thermal canopy analysis, enabling stress assessment.•Compact YOLOv8-C model for faster object detection.•Integrating YOLOv8-C and FastSAM for whole canopy thermal image segmentation of tomato plants.•Masked ROI for precise temperature extraction, enabling targeted analysis of plant regions.•Enhanced understanding of plant stress physiology and precise monitoring of growth dynamics. Imaging has revolutionized plant studies, offering non-invasive insights into stress responses and growth dynamics. Traditional thermal imaging methods in plant studies have primarily focused on analyzing specific regions of interest rather than segmenting the entire canopy. This study introduces an innovative approach combining compact YOLOv8-C detection technology with the Fast Segment Anything Model (FastSAM). The compact YOLOv8-C model differs from the original YOLOv8l (large) model by simplifying the Neck architecture and reducing the number of convolutional and upsampling layers. It enables faster processing and maintains accuracy by achieving superior detection performance, with a mean average precision (mAP50) of 99.2%, mAP95 of 94.6%, precision of 99.3%, recall of 98.7%, and an F1 score of 99%. The methodological innovation emerges through using YOLOv8-C's bounding box outputs as refined input prompts for FastSAM, enabling sophisticated and precise canopy segmentation. Segmentation with FastSAM yielded an Intersection over Union (IoU) score of 92.28%, a Dice Similarity Coefficient (DSC) of 95.99%, and a Global Accuracy (GA) of 98.29%. Advancing this methodology, we introduce a masked region of interest (ROI) temperature extraction technique, enabling targeted temperature extraction of segmented plant regions. This integrated framework, combining YOLOv8-C's detection capabilities with FastSAM's segmentation, is collectively called TCSegNet (Thermal Canopy Segmentation Network). This novel approach leverages an innovative prompt selection strategy for comprehensive thermal canopy segmentation, marking a substantial advancement in plant imaging technology.
doi_str_mv 10.1016/j.atech.2025.100806
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_atech_2025_100806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772375525000401</els_id><sourcerecordid>S2772375525000401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1436-6f3d6799785f32369e001a8ff7ea86f98ae106ac9cd49758a58c28206d6ce4af3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOHRP4E1eoDNN1zQVvCjF6WA6YfPCq3BIT9aMtilpmOzt3awXXnl1fg58Pz8fIXcxm8UsFvf7GQTU9Ywznp4-TDJxQSY8y3iUZGl6-Sdfk-kw7BljXKZC5nJCdtsafQsNLaFz_ZFucNdiFyBY11Hb0a1rITj63kAXhgda0Dd3wIYWfe8d6Jp-2VDTZRdw50fGGfq5Xq0PMiopdBVdwBA2xestuTLQDDj9vTfkY_G0LV-i1fp5WRarSMfzRETCJJXI8jyTqUl4InJkLAZpTIYghcklYMwE6FxX8zxLJaRSc8mZqITGOZjkhiRjr_ZuGDwa1Xvbgj-qmKmzLrVXP7rUWZcadZ2ox5HC07SDRa8GbbHTWFmPOqjK2X_5bw6Vcyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM</title><source>Elsevier ScienceDirect Journals</source><creator>P, Hemamalini ; MK, Chandraprakash ; RH, Laxman ; C, Rathinakumari ; G, Senthil Kumaran ; K, Suneetha</creator><creatorcontrib>P, Hemamalini ; MK, Chandraprakash ; RH, Laxman ; C, Rathinakumari ; G, Senthil Kumaran ; K, Suneetha</creatorcontrib><description>•Holistic thermal canopy analysis, enabling stress assessment.•Compact YOLOv8-C model for faster object detection.•Integrating YOLOv8-C and FastSAM for whole canopy thermal image segmentation of tomato plants.•Masked ROI for precise temperature extraction, enabling targeted analysis of plant regions.•Enhanced understanding of plant stress physiology and precise monitoring of growth dynamics. Imaging has revolutionized plant studies, offering non-invasive insights into stress responses and growth dynamics. Traditional thermal imaging methods in plant studies have primarily focused on analyzing specific regions of interest rather than segmenting the entire canopy. This study introduces an innovative approach combining compact YOLOv8-C detection technology with the Fast Segment Anything Model (FastSAM). The compact YOLOv8-C model differs from the original YOLOv8l (large) model by simplifying the Neck architecture and reducing the number of convolutional and upsampling layers. It enables faster processing and maintains accuracy by achieving superior detection performance, with a mean average precision (mAP50) of 99.2%, mAP95 of 94.6%, precision of 99.3%, recall of 98.7%, and an F1 score of 99%. The methodological innovation emerges through using YOLOv8-C's bounding box outputs as refined input prompts for FastSAM, enabling sophisticated and precise canopy segmentation. Segmentation with FastSAM yielded an Intersection over Union (IoU) score of 92.28%, a Dice Similarity Coefficient (DSC) of 95.99%, and a Global Accuracy (GA) of 98.29%. Advancing this methodology, we introduce a masked region of interest (ROI) temperature extraction technique, enabling targeted temperature extraction of segmented plant regions. This integrated framework, combining YOLOv8-C's detection capabilities with FastSAM's segmentation, is collectively called TCSegNet (Thermal Canopy Segmentation Network). This novel approach leverages an innovative prompt selection strategy for comprehensive thermal canopy segmentation, marking a substantial advancement in plant imaging technology.</description><identifier>ISSN: 2772-3755</identifier><identifier>EISSN: 2772-3755</identifier><identifier>DOI: 10.1016/j.atech.2025.100806</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Detection ; Fast Segment Anything Model (SAM) ; Machine Learning ; Segmentation ; Thermal imaging ; Tomato Plants ; YOLOv8</subject><ispartof>Smart agricultural technology, 2025-01, p.100806, Article 100806</ispartof><rights>2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1436-6f3d6799785f32369e001a8ff7ea86f98ae106ac9cd49758a58c28206d6ce4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>P, Hemamalini</creatorcontrib><creatorcontrib>MK, Chandraprakash</creatorcontrib><creatorcontrib>RH, Laxman</creatorcontrib><creatorcontrib>C, Rathinakumari</creatorcontrib><creatorcontrib>G, Senthil Kumaran</creatorcontrib><creatorcontrib>K, Suneetha</creatorcontrib><title>Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM</title><title>Smart agricultural technology</title><description>•Holistic thermal canopy analysis, enabling stress assessment.•Compact YOLOv8-C model for faster object detection.•Integrating YOLOv8-C and FastSAM for whole canopy thermal image segmentation of tomato plants.•Masked ROI for precise temperature extraction, enabling targeted analysis of plant regions.•Enhanced understanding of plant stress physiology and precise monitoring of growth dynamics. Imaging has revolutionized plant studies, offering non-invasive insights into stress responses and growth dynamics. Traditional thermal imaging methods in plant studies have primarily focused on analyzing specific regions of interest rather than segmenting the entire canopy. This study introduces an innovative approach combining compact YOLOv8-C detection technology with the Fast Segment Anything Model (FastSAM). The compact YOLOv8-C model differs from the original YOLOv8l (large) model by simplifying the Neck architecture and reducing the number of convolutional and upsampling layers. It enables faster processing and maintains accuracy by achieving superior detection performance, with a mean average precision (mAP50) of 99.2%, mAP95 of 94.6%, precision of 99.3%, recall of 98.7%, and an F1 score of 99%. The methodological innovation emerges through using YOLOv8-C's bounding box outputs as refined input prompts for FastSAM, enabling sophisticated and precise canopy segmentation. Segmentation with FastSAM yielded an Intersection over Union (IoU) score of 92.28%, a Dice Similarity Coefficient (DSC) of 95.99%, and a Global Accuracy (GA) of 98.29%. Advancing this methodology, we introduce a masked region of interest (ROI) temperature extraction technique, enabling targeted temperature extraction of segmented plant regions. This integrated framework, combining YOLOv8-C's detection capabilities with FastSAM's segmentation, is collectively called TCSegNet (Thermal Canopy Segmentation Network). This novel approach leverages an innovative prompt selection strategy for comprehensive thermal canopy segmentation, marking a substantial advancement in plant imaging technology.</description><subject>Detection</subject><subject>Fast Segment Anything Model (SAM)</subject><subject>Machine Learning</subject><subject>Segmentation</subject><subject>Thermal imaging</subject><subject>Tomato Plants</subject><subject>YOLOv8</subject><issn>2772-3755</issn><issn>2772-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOHRP4E1eoDNN1zQVvCjF6WA6YfPCq3BIT9aMtilpmOzt3awXXnl1fg58Pz8fIXcxm8UsFvf7GQTU9Ywznp4-TDJxQSY8y3iUZGl6-Sdfk-kw7BljXKZC5nJCdtsafQsNLaFz_ZFucNdiFyBY11Hb0a1rITj63kAXhgda0Dd3wIYWfe8d6Jp-2VDTZRdw50fGGfq5Xq0PMiopdBVdwBA2xestuTLQDDj9vTfkY_G0LV-i1fp5WRarSMfzRETCJJXI8jyTqUl4InJkLAZpTIYghcklYMwE6FxX8zxLJaRSc8mZqITGOZjkhiRjr_ZuGDwa1Xvbgj-qmKmzLrVXP7rUWZcadZ2ox5HC07SDRa8GbbHTWFmPOqjK2X_5bw6Vcyw</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>P, Hemamalini</creator><creator>MK, Chandraprakash</creator><creator>RH, Laxman</creator><creator>C, Rathinakumari</creator><creator>G, Senthil Kumaran</creator><creator>K, Suneetha</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202501</creationdate><title>Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM</title><author>P, Hemamalini ; MK, Chandraprakash ; RH, Laxman ; C, Rathinakumari ; G, Senthil Kumaran ; K, Suneetha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1436-6f3d6799785f32369e001a8ff7ea86f98ae106ac9cd49758a58c28206d6ce4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Detection</topic><topic>Fast Segment Anything Model (SAM)</topic><topic>Machine Learning</topic><topic>Segmentation</topic><topic>Thermal imaging</topic><topic>Tomato Plants</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>P, Hemamalini</creatorcontrib><creatorcontrib>MK, Chandraprakash</creatorcontrib><creatorcontrib>RH, Laxman</creatorcontrib><creatorcontrib>C, Rathinakumari</creatorcontrib><creatorcontrib>G, Senthil Kumaran</creatorcontrib><creatorcontrib>K, Suneetha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Smart agricultural technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>P, Hemamalini</au><au>MK, Chandraprakash</au><au>RH, Laxman</au><au>C, Rathinakumari</au><au>G, Senthil Kumaran</au><au>K, Suneetha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM</atitle><jtitle>Smart agricultural technology</jtitle><date>2025-01</date><risdate>2025</risdate><spage>100806</spage><pages>100806-</pages><artnum>100806</artnum><issn>2772-3755</issn><eissn>2772-3755</eissn><abstract>•Holistic thermal canopy analysis, enabling stress assessment.•Compact YOLOv8-C model for faster object detection.•Integrating YOLOv8-C and FastSAM for whole canopy thermal image segmentation of tomato plants.•Masked ROI for precise temperature extraction, enabling targeted analysis of plant regions.•Enhanced understanding of plant stress physiology and precise monitoring of growth dynamics. Imaging has revolutionized plant studies, offering non-invasive insights into stress responses and growth dynamics. Traditional thermal imaging methods in plant studies have primarily focused on analyzing specific regions of interest rather than segmenting the entire canopy. This study introduces an innovative approach combining compact YOLOv8-C detection technology with the Fast Segment Anything Model (FastSAM). The compact YOLOv8-C model differs from the original YOLOv8l (large) model by simplifying the Neck architecture and reducing the number of convolutional and upsampling layers. It enables faster processing and maintains accuracy by achieving superior detection performance, with a mean average precision (mAP50) of 99.2%, mAP95 of 94.6%, precision of 99.3%, recall of 98.7%, and an F1 score of 99%. The methodological innovation emerges through using YOLOv8-C's bounding box outputs as refined input prompts for FastSAM, enabling sophisticated and precise canopy segmentation. Segmentation with FastSAM yielded an Intersection over Union (IoU) score of 92.28%, a Dice Similarity Coefficient (DSC) of 95.99%, and a Global Accuracy (GA) of 98.29%. Advancing this methodology, we introduce a masked region of interest (ROI) temperature extraction technique, enabling targeted temperature extraction of segmented plant regions. This integrated framework, combining YOLOv8-C's detection capabilities with FastSAM's segmentation, is collectively called TCSegNet (Thermal Canopy Segmentation Network). This novel approach leverages an innovative prompt selection strategy for comprehensive thermal canopy segmentation, marking a substantial advancement in plant imaging technology.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.atech.2025.100806</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-3755
ispartof Smart agricultural technology, 2025-01, p.100806, Article 100806
issn 2772-3755
2772-3755
language eng
recordid cdi_crossref_primary_10_1016_j_atech_2025_100806
source Elsevier ScienceDirect Journals
subjects Detection
Fast Segment Anything Model (SAM)
Machine Learning
Segmentation
Thermal imaging
Tomato Plants
YOLOv8
title Thermal Canopy Segmentation in Tomato Plants: A Novel Approach with Integration of YOLOv8-C and FastSAM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Canopy%20Segmentation%20in%20Tomato%20Plants:%20A%20Novel%20Approach%20with%20Integration%20of%20YOLOv8-C%20and%20FastSAM&rft.jtitle=Smart%20agricultural%20technology&rft.au=P,%20Hemamalini&rft.date=2025-01&rft.spage=100806&rft.pages=100806-&rft.artnum=100806&rft.issn=2772-3755&rft.eissn=2772-3755&rft_id=info:doi/10.1016/j.atech.2025.100806&rft_dat=%3Celsevier_cross%3ES2772375525000401%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1436-6f3d6799785f32369e001a8ff7ea86f98ae106ac9cd49758a58c28206d6ce4af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true