Loading…

Atmospheric humidity and particle charging state on agglomeration of aerosol particles

Formation of haze is a phenomenon dependent on the relative atmospheric humidity and concentration of aerosol particles. The physical and chemical reactions on particle surfaces would lead to variations in particle sizes. This paper focuses on the physical behaviour of aerosol particles under the in...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment (1994) 2019-01, Vol.197, p.141-149
Main Authors: He, Yuanping, Gu, Zhaolin, Lu, Weizhen, Zhang, Liyuan, Okuda, Tomoaki, Fujioka, Kentaro, Luo, Hui, Yu, Chuck Wah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Formation of haze is a phenomenon dependent on the relative atmospheric humidity and concentration of aerosol particles. The physical and chemical reactions on particle surfaces would lead to variations in particle sizes. This paper focuses on the physical behaviour of aerosol particles under the influence of atmospheric humidity, which produces liquid bridging forces and electrostatic interactions among particles. By water absorption experiment, a correlation between relative humidity (RH) and water content on particles was obtained. Through theoretical derivation, a relationship between the relative humidity and humidity ratio was established for calculating liquid bridging forces. The findings from experiments on atmospheric particles charging, showed most aerosols were negatively or positively charged and the average charges on these particles was more than one. An extended soft-sphere discrete element method (DEM) was used to simulate the evolution of aerosol particles, encapsulated in water vapour by considering liquid bridging forces, electrostatic interactions and Brownian forces. Results suggest that the agglomeration rate of particles would increase with a rise in the atmospheric humidity due to the increased liquid bridging forces that enhance the agglomeration velocity. The higher humidity would enhance the ionization on particle surfaces, which could affect electrostatic interactions. This paper provides an insight of a mechanism for formation of haze in atmosphere. •Extended DEM model is developed to show the size evolution of aerosol particles.•Liquid-bridge and electrical forces related to RH is present in our simulation.•Our experiment further indicates most particles charged negatively or positively.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2018.10.035