Loading…
Light absorption of brown carbon in PM2.5 in the Three Gorges Reservoir region, southwestern China: Implications of biomass burning and secondary formation
Brown carbon (BrC) is known as a light-absorbing organic aerosol which affects the visibility and radiative forcing budget in the troposphere. The optical properties were studied for filter-based PM2.5 samples collected from the winter of 2015 to the summer of 2016 at one rural and three urban sites...
Saved in:
Published in: | Atmospheric environment (1994) 2020-05, Vol.229, p.117409, Article 117409 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brown carbon (BrC) is known as a light-absorbing organic aerosol which affects the visibility and radiative forcing budget in the troposphere. The optical properties were studied for filter-based PM2.5 samples collected from the winter of 2015 to the summer of 2016 at one rural and three urban sites in the Three Gorges Reservoir (TGR) region, China. The average light absorption coefficient for BrC (βabs, 405,BrC) at 405 nm and its contributions to total aerosol light absorption during winter were 12.1 ± 7.0 Mm−1 and 23.8 ± 9.1% respectively, higher than those during summer (1.7 ± 0.8 Mm−1 and 11.2 ± 4.1%). Spatially, the average βabs,405,BrC was higher at the urban sites (13.4 ± 7.3 Mm−1) than that at the rural site (7.8 ± 3.2 Mm−1). The average mass absorption efficiency of BrC at 405 nm (MAE405,BrC) was 0.8 ± 0.4 m2 g−1 during winter which was 2.7 times higher than that during summer (0.3 ± 0.1 m2 g−1). Furthermore, the absorption Ångström exponents (AAE) at 405–980 nm (AAE405−980) were 1.1 ± 0.1 in summer and 1.3 ± 0.2 in winter respectively. Correlation analysis suggests that biomass burning (BB) played an important role in βabs,405,BrC during winter. Additionally, the relatively high AAE405−980 during winter was mainly due to the BrC from both BB and secondary organic aerosol. The fractional contribution of solar energy absorption by BrC relative to BC in the wavelengths of 405–445 nm was 23.9 ± 7.8% in summer and 63.7 ± 14.2% in winter, significantly higher than that in the range of 405–980 nm (11.9 ± 3.4% and 29.9 ± 6.1% respectively). Overall, this study contributes to the understanding of sources of BrC in the climate-sensitive TGR region of southwestern China.
•Light absorption by BrC in the TGR region was measured using filter samples.•MAEBC was relatively stable, while MAEBrC increased from summer to winter.•Biomass burning was a significant source of BrC during winter.•AAE405−980 was significantly affected by both BB and secondary organic aerosol during winter.•A significant contribution of solar energy absorption by BrC was found in the near-ultraviolet range (405–445 nm). |
---|---|
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2020.117409 |