Loading…
Impact of the 2020 COVID-19 lockdown on the concentration of non-methane volatile organic compounds in a UK urban atmosphere
The changes in air quality brought about by the COVID-19 lockdowns can provide valuable insight into how longer-term reductions in emissions might affect atmospheric composition. In urban Leicester UK, the 2020 COVID “lockdown” brought about several notable changes in atmospheric composition, includ...
Saved in:
Published in: | Atmospheric environment (1994) 2024-12, Vol.338, p.120836, Article 120836 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The changes in air quality brought about by the COVID-19 lockdowns can provide valuable insight into how longer-term reductions in emissions might affect atmospheric composition. In urban Leicester UK, the 2020 COVID “lockdown” brought about several notable changes in atmospheric composition, including a considerable decrease (20–60%) in concentrations of non-methane volatile organic compounds (NMVOCs). Given their varied emission sources and lifetimes, NMVOC data can give valuable insights into how behavioural change impact atmospheric composition. The total concentration of 48 NMVOCs at roadside (RS) sites decreased from a pre-lockdown (sampled 16th-24th March 2020) concentration of 181.3 ± 41.4 μg/m3 to 82.0 ± 12.8 μg/m3 during lockdown (LD, sampled 18th-21st May 2020), before rebounding to a concentration of 236.3 ± 23.9 μg/m3 post lockdown (post-LD, sampled 14th-17th Sept 2020). A similar pattern was observed at urban background (UB) sites with concentrations reducing during lockdown to 96.8 ± 39.5 μg/m3 from a pre-lockdown (pre-LD) concentration of 123.2 ± 24.6 μg/m3 and then increasing to 168.6 ± 29.1 μg/m3 post-LD.
Generally, despite the decrease in NMVOC concentrations during the LD, an increase in O3 level was observed. This was attributed to decreased emissions of NOx and the subsequent repartioning of Ox. This research assessed the quantitative effect of changes in vehicular and related anthropogenic emissions on air quality, providing valuable insights for the formulation of future air pollution controls.
•Lockdown brought about decrease (20–60%) for non-methane volatile organic compounds and nitrogen dioxide NO2 but an increase in ozone O3.•Alkanes had the highest contribution to atmosphere and ethanol was the most abundant compound.•Toluene benzene ratio during LD indicated additional sources of biomass, domestic heating other than traffic emissions. |
---|---|
ISSN: | 1352-2310 |
DOI: | 10.1016/j.atmosenv.2024.120836 |