Loading…

Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric research 2018-05, Vol.204, p.136-148
Main Authors: Fehlmann, Michael, Gascón, Estíbaliz, Rohrer, Mario, Schwarb, Manfred, Stoffel, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the ensemble-based forecast could be used to anticipate such an event up to 7–8 days ahead, whereas the use of the HRES is limited to a lead time of 4–5 days. For the different lead times investigated, we point out possibilities of considering uncertainties in snowfall limit and precipitation type estimates so as to increase preparedness to risk situations. •Interpolation of surface temperatures tends to overestimate the snowfall limit.•A bias correction is performed based on local measurements.•Uncert
ISSN:0169-8095
1873-2895
DOI:10.1016/j.atmosres.2018.01.016