Loading…
A barrier function approach to finite-time stochastic system verification and control
We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given safe region of the state space in finite-time and...
Saved in:
Published in: | Automatica (Oxford) 2021-03, Vol.125, p.109439, Article 109439 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3 |
container_end_page | |
container_issue | |
container_start_page | 109439 |
container_title | Automatica (Oxford) |
container_volume | 125 |
creator | Santoyo, Cesar Dutreix, Maxence Coogan, Samuel |
description | We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given safe region of the state space in finite-time and consider both continuous-time and discrete-time systems. A barrier certificate condition that bounds the expected value of the barrier function over the time horizon is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent upper bound on the evolution of the expectation, allowing for tighter probability bounds. Two examples are presented. |
doi_str_mv | 10.1016/j.automatica.2020.109439 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_automatica_2020_109439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109820306415</els_id><sourcerecordid>S0005109820306415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnaf9APONVIfsjLNPQFgW6atZBHEpGJrSApgfx9HVzosqthZrj3zhxCKLAVMKif-5U-5TDo7FGvOOPXcVuK9oYsQDai4FLUt2TBGKuKaSPvyUNK_dSWIPmC7Na00zF6G6k7jZh9GKk-HmPQuKc5UOdHn22R_WBpygH3Ok1JNF1StgM92-jdFDzLRkMxjDmGwyO5c_qQ7NNvXZLd2-v35qPYfr1_btbbAgXIXGBrStdVBhk3vHLcNAyaWgoAAW1pTWOgBVNqKRA1Oic51gBVBbzrbNdasSRy9sUYUorWqWP0g44XBUxd8ahe_eFRVzxqxjNJX2apne47T_-rhN6OaI2PFrMywf9v8gOT13V_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A barrier function approach to finite-time stochastic system verification and control</title><source>ScienceDirect Freedom Collection</source><creator>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</creator><creatorcontrib>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</creatorcontrib><description>We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given safe region of the state space in finite-time and consider both continuous-time and discrete-time systems. A barrier certificate condition that bounds the expected value of the barrier function over the time horizon is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent upper bound on the evolution of the expectation, allowing for tighter probability bounds. Two examples are presented.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2020.109439</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Automatica (Oxford), 2021-03, Vol.125, p.109439, Article 109439</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3</citedby><cites>FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Santoyo, Cesar</creatorcontrib><creatorcontrib>Dutreix, Maxence</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><title>A barrier function approach to finite-time stochastic system verification and control</title><title>Automatica (Oxford)</title><description>We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given safe region of the state space in finite-time and consider both continuous-time and discrete-time systems. A barrier certificate condition that bounds the expected value of the barrier function over the time horizon is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent upper bound on the evolution of the expectation, allowing for tighter probability bounds. Two examples are presented.</description><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnaf9APONVIfsjLNPQFgW6atZBHEpGJrSApgfx9HVzosqthZrj3zhxCKLAVMKif-5U-5TDo7FGvOOPXcVuK9oYsQDai4FLUt2TBGKuKaSPvyUNK_dSWIPmC7Na00zF6G6k7jZh9GKk-HmPQuKc5UOdHn22R_WBpygH3Ok1JNF1StgM92-jdFDzLRkMxjDmGwyO5c_qQ7NNvXZLd2-v35qPYfr1_btbbAgXIXGBrStdVBhk3vHLcNAyaWgoAAW1pTWOgBVNqKRA1Oic51gBVBbzrbNdasSRy9sUYUorWqWP0g44XBUxd8ahe_eFRVzxqxjNJX2apne47T_-rhN6OaI2PFrMywf9v8gOT13V_</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Santoyo, Cesar</creator><creator>Dutreix, Maxence</creator><creator>Coogan, Samuel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202103</creationdate><title>A barrier function approach to finite-time stochastic system verification and control</title><author>Santoyo, Cesar ; Dutreix, Maxence ; Coogan, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoyo, Cesar</creatorcontrib><creatorcontrib>Dutreix, Maxence</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><collection>CrossRef</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoyo, Cesar</au><au>Dutreix, Maxence</au><au>Coogan, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A barrier function approach to finite-time stochastic system verification and control</atitle><jtitle>Automatica (Oxford)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>125</volume><spage>109439</spage><pages>109439-</pages><artnum>109439</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>We study the problem of synthesizing a control strategy to enforce safety of affine-in-control stochastic dynamical systems over finite time horizons. We use stochastic control barrier functions to quantify the probability that a system exits a given safe region of the state space in finite-time and consider both continuous-time and discrete-time systems. A barrier certificate condition that bounds the expected value of the barrier function over the time horizon is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed certificate condition includes a state-dependent upper bound on the evolution of the expectation, allowing for tighter probability bounds. Two examples are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2020.109439</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2021-03, Vol.125, p.109439, Article 109439 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_automatica_2020_109439 |
source | ScienceDirect Freedom Collection |
title | A barrier function approach to finite-time stochastic system verification and control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20barrier%20function%20approach%20to%20finite-time%20stochastic%20system%20verification%20and%20control&rft.jtitle=Automatica%20(Oxford)&rft.au=Santoyo,%20Cesar&rft.date=2021-03&rft.volume=125&rft.spage=109439&rft.pages=109439-&rft.artnum=109439&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2020.109439&rft_dat=%3Celsevier_cross%3ES0005109820306415%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-c9d4fb5dc02d25f2d7017683113194ed7d191d4a83ccacff82c6115512bbeb9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |