Loading…
Adaptive learning control for nonlinear systems: A single learning estimation scheme is enough
In this brief, continuous-time nonlinear systems with extended matching uncertainties are considered. The problem of designing a state-feedback adaptive learning control of reduced complexity — just including a single adaptive learning estimation scheme in the upper subsystem and a high-gain proport...
Saved in:
Published in: | Automatica (Oxford) 2023-03, Vol.149, p.110833, Article 110833 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this brief, continuous-time nonlinear systems with extended matching uncertainties are considered. The problem of designing a state-feedback adaptive learning control of reduced complexity — just including a single adaptive learning estimation scheme in the upper subsystem and a high-gain proportional action in the input channel — is addressed. By properly setting the control parameters, exponential output tracking of (sufficiently smooth) periodic reference signals with a known period is achieved. Fourier series expansions are used and estimates of the resulting Fourier coefficients are continuously adapted based on the persistency of excitation conditions that naturally hold due to the orthogonal nature of the sinusoidal basis functions. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2022.110833 |