Loading…

On inherent limitations in robustness and performance for a class of prescribed-time algorithms

Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2023-12, Vol.158, p.111284, Article 111284
Main Authors: Aldana-López, Rodrigo, Seeber, Richard, Haimovich, Hernan, Gómez-Gutiérrez, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3
cites cdi_FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3
container_end_page
container_issue
container_start_page 111284
container_title Automatica (Oxford)
container_volume 158
creator Aldana-López, Rodrigo
Seeber, Richard
Haimovich, Hernan
Gómez-Gutiérrez, David
description Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack robustness to measurement noise. This note shows that the lack of robustness of a class of prescribed-time algorithms is of an extreme form. Specifically, we show the existence of arbitrarily small measurement noises causing considerable deviations, divergence, and other detrimental consequences. We also discuss some drawbacks and trade-offs of existing workarounds as motivation for further analysis.
doi_str_mv 10.1016/j.automatica.2023.111284
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_automatica_2023_111284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510982300448X</els_id><sourcerecordid>S000510982300448X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKvvkBeYMZeZTLrU4g0K3eg6ZM6c2JSZSUlSwbc3pYJLV-fG__OfjxDKWc0ZV_f72h5zmGz2YGvBhKw550I3F2TBdScroaW6JAvGWFtxttLX5CalfRkbrsWCmO1M_bzDiHOmo598Lk5hTmVJY-iPKc-YErXzQA8YXYiTnQFpaailMNpyC44eIiaIvsehyn5CasfPEH3eTemWXDk7Jrz7rUvy8fz0vn6tNtuXt_XDpgLJda7AgZOdKPlQAkol2l6L1q5407pOrQRIxqVVFlQDAnvVtcp23cp1IIUVEuSS6LMvxJBSRGcO0U82fhvOzAmU2Zs_UOYEypxBFenjWYol35fHaBJ4LF8OPiJkMwT_v8kPc7F4Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On inherent limitations in robustness and performance for a class of prescribed-time algorithms</title><source>ScienceDirect Journals</source><creator>Aldana-López, Rodrigo ; Seeber, Richard ; Haimovich, Hernan ; Gómez-Gutiérrez, David</creator><creatorcontrib>Aldana-López, Rodrigo ; Seeber, Richard ; Haimovich, Hernan ; Gómez-Gutiérrez, David</creatorcontrib><description>Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack robustness to measurement noise. This note shows that the lack of robustness of a class of prescribed-time algorithms is of an extreme form. Specifically, we show the existence of arbitrarily small measurement noises causing considerable deviations, divergence, and other detrimental consequences. We also discuss some drawbacks and trade-offs of existing workarounds as motivation for further analysis.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2023.111284</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Prescribed-time controllers ; Prescribed-time differentiators ; Prescribed-time observers ; Robustness analysis</subject><ispartof>Automatica (Oxford), 2023-12, Vol.158, p.111284, Article 111284</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3</citedby><cites>FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aldana-López, Rodrigo</creatorcontrib><creatorcontrib>Seeber, Richard</creatorcontrib><creatorcontrib>Haimovich, Hernan</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, David</creatorcontrib><title>On inherent limitations in robustness and performance for a class of prescribed-time algorithms</title><title>Automatica (Oxford)</title><description>Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack robustness to measurement noise. This note shows that the lack of robustness of a class of prescribed-time algorithms is of an extreme form. Specifically, we show the existence of arbitrarily small measurement noises causing considerable deviations, divergence, and other detrimental consequences. We also discuss some drawbacks and trade-offs of existing workarounds as motivation for further analysis.</description><subject>Prescribed-time controllers</subject><subject>Prescribed-time differentiators</subject><subject>Prescribed-time observers</subject><subject>Robustness analysis</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKvvkBeYMZeZTLrU4g0K3eg6ZM6c2JSZSUlSwbc3pYJLV-fG__OfjxDKWc0ZV_f72h5zmGz2YGvBhKw550I3F2TBdScroaW6JAvGWFtxttLX5CalfRkbrsWCmO1M_bzDiHOmo598Lk5hTmVJY-iPKc-YErXzQA8YXYiTnQFpaailMNpyC44eIiaIvsehyn5CasfPEH3eTemWXDk7Jrz7rUvy8fz0vn6tNtuXt_XDpgLJda7AgZOdKPlQAkol2l6L1q5407pOrQRIxqVVFlQDAnvVtcp23cp1IIUVEuSS6LMvxJBSRGcO0U82fhvOzAmU2Zs_UOYEypxBFenjWYol35fHaBJ4LF8OPiJkMwT_v8kPc7F4Zg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Aldana-López, Rodrigo</creator><creator>Seeber, Richard</creator><creator>Haimovich, Hernan</creator><creator>Gómez-Gutiérrez, David</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>On inherent limitations in robustness and performance for a class of prescribed-time algorithms</title><author>Aldana-López, Rodrigo ; Seeber, Richard ; Haimovich, Hernan ; Gómez-Gutiérrez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Prescribed-time controllers</topic><topic>Prescribed-time differentiators</topic><topic>Prescribed-time observers</topic><topic>Robustness analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldana-López, Rodrigo</creatorcontrib><creatorcontrib>Seeber, Richard</creatorcontrib><creatorcontrib>Haimovich, Hernan</creatorcontrib><creatorcontrib>Gómez-Gutiérrez, David</creatorcontrib><collection>CrossRef</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldana-López, Rodrigo</au><au>Seeber, Richard</au><au>Haimovich, Hernan</au><au>Gómez-Gutiérrez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On inherent limitations in robustness and performance for a class of prescribed-time algorithms</atitle><jtitle>Automatica (Oxford)</jtitle><date>2023-12</date><risdate>2023</risdate><volume>158</volume><spage>111284</spage><pages>111284-</pages><artnum>111284</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack robustness to measurement noise. This note shows that the lack of robustness of a class of prescribed-time algorithms is of an extreme form. Specifically, we show the existence of arbitrarily small measurement noises causing considerable deviations, divergence, and other detrimental consequences. We also discuss some drawbacks and trade-offs of existing workarounds as motivation for further analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2023.111284</doi></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2023-12, Vol.158, p.111284, Article 111284
issn 0005-1098
1873-2836
language eng
recordid cdi_crossref_primary_10_1016_j_automatica_2023_111284
source ScienceDirect Journals
subjects Prescribed-time controllers
Prescribed-time differentiators
Prescribed-time observers
Robustness analysis
title On inherent limitations in robustness and performance for a class of prescribed-time algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20inherent%20limitations%20in%20robustness%20and%20performance%20for%20a%20class%20of%20prescribed-time%20algorithms&rft.jtitle=Automatica%20(Oxford)&rft.au=Aldana-L%C3%B3pez,%20Rodrigo&rft.date=2023-12&rft.volume=158&rft.spage=111284&rft.pages=111284-&rft.artnum=111284&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2023.111284&rft_dat=%3Celsevier_cross%3ES000510982300448X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-cfcf372098e3ce3625b825a9145f7692c3013a6ac64c2eb6756a779f7c32a23c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true