Loading…
Relative roles of niche and neutral processes on turnover of plant, fungal and bacterial communities in arid and semi-arid areas at the regional scale
The mechanisms that determine the spatial structure of macroscopic and microbial communities and how they respond to environmental changes are central themes that have been explored in ecological research. However, little is known about the relative roles and importance of neutral and niche-related...
Saved in:
Published in: | Basic and applied ecology 2019-11, Vol.40, p.43-54 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanisms that determine the spatial structure of macroscopic and microbial communities and how they respond to environmental changes are central themes that have been explored in ecological research. However, little is known about the relative roles and importance of neutral and niche-related factors in the assemblage of bacterial, fungal, and plant communities. Here partial Mantel, null model, and variation partitioning analysis were used to compare mechanisms driving the beta diversity of bacteria, fungi and plant communities at the regional scale in arid and semi-arid areas. Denaturing gradient gel electrophoresis (PCR-DGGE) was used to evaluate the distribution pattern of microbial communities, and vegetation survey were conducted to evaluate the characteristics of plant communities. We found that bacterial, fungal, and plant communities were strongly influenced by niche processes at the regional scale in arid and semi-arid areas. Bacteria had a stronger habitat association, indicating community assembly is strongly affected by niche processes. Fungi, with their body size between plants and bacteria, had moderate environment correlation, and plants had less environment association than fungi or bacteria, which suggests that body size may determine the association between organism and environment. We concluded that the pivotal niche process, environmental filtering, weakened with increasing body size, and it should be considered when we evaluate the relative roles of deterministic and stochastic processes in community assemblage. |
---|---|
ISSN: | 1439-1791 |
DOI: | 10.1016/j.baae.2019.08.005 |