Loading…
The past and present of sodium energetics: May the sodium-motive force be with you
All living cells routinely expel Na+ ions, maintaining lower concentration of Na+ in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na+ occurs at the expense of the proton-motive force. Some bacteria, however, po...
Saved in:
Published in: | Biochimica et biophysica acta 2008-07, Vol.1777 (7-8), p.985-992 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All living cells routinely expel Na+ ions, maintaining lower concentration of Na+ in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na+ occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na+ (sodium-motive force). These primary Na+ pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H+, not Na+, as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na+ to H+ as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force. |
---|---|
ISSN: | 0005-2728 0006-3002 1879-2650 |
DOI: | 10.1016/j.bbabio.2008.04.028 |