Loading…

Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: The way to apoptosis

Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2006-02, Vol.1763 (2), p.152-163
Main Authors: Dymkowska, Dorota, Szczepanowska, Joanna, Więckowski, Mariusz R., Wojtczak, Lech
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by cyclosporin A, blocker of the mitochondrial permeability transition pore. Arachidonic acid increased the rate of reactive oxygen species (ROS) production, while oleic acid decreased it. Both fatty acids induced apoptotic cell death of AS-30D cells, accompanied by the release of cytochrome c from mitochondria to the cytosol, activation of caspase-3 and association of proapoptotic Bax protein with mitochondria; arachidonic acid being a more potent inducer than oleic acid. Trolox, a potent antioxidant, prevented ROS increase induced by arachidonic acid and protected the cells against apoptosis produced by this fatty acid. It is concluded that arachidonic and oleic acids induce apoptosis of AS-30D hepatoma cells by the mitochondrial pathway but differ in the mechanism of their action: Arachidonic acid induces apoptosis mainly by stimulating ROS production, whereas oleic acid may contribute to programmed cell death by activation of the mitochondrial permeability transition pore.
ISSN:0167-4889
0006-3002
1879-2596
DOI:10.1016/j.bbamcr.2005.12.009