Loading…
Understanding the central role of citrate in the metabolism of cancer cells
Cancers cells strongly stimulate glycolysis and glutaminolysis for their biosynthesis. Pyruvate derived from glucose is preferentially diverted towards the production of lactic acid (Warburg effect). Citrate censors ATP production and controls strategic enzymes of anabolic and catabolic pathways thr...
Saved in:
Published in: | Biochimica et biophysica acta 2012, Vol.1825 (1), p.111-116 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cancers cells strongly stimulate glycolysis and glutaminolysis for their biosynthesis. Pyruvate derived from glucose is preferentially diverted towards the production of lactic acid (Warburg effect). Citrate censors ATP production and controls strategic enzymes of anabolic and catabolic pathways through feedback reactions. Mitochondrial citrate diffuses in the cytosol to restore oxaloacetate and acetyl-CoA. Whereas acetyl-CoA serves
de novo lipid synthesis and histone acetylation, OAA is derived towards lactate production via pyruvate and / or a vicious cycle reforming mitochondrial citrate. This cycle allows cancer cells to burn their host's lipid and protein reserves in order to sustain their own biosynthesis pathways.
In vitro, citrate has demonstrated anti-cancer properties when administered in excess, sensitizing cancer cells to chemotherapy. Understanding its central role is of particular relevance for the development of new strategies for counteracting cancer cell proliferation and overcoming chemoresistance. |
---|---|
ISSN: | 0304-419X 0006-3002 1879-2561 |
DOI: | 10.1016/j.bbcan.2011.10.007 |