Loading…

Early diagnosis of Parkinson’s disease using a hybrid method of least squares support vector regression and fuzzy clustering

Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more effo...

Full description

Saved in:
Bibliographic Details
Published in:Biocybernetics and biomedical engineering 2024-07, Vol.44 (3), p.569-585
Main Authors: Ahmadi, Hossein, Huo, Lin, Arji, Goli, Sheikhtaheri, Abbas, Zhou, Shang-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more efforts that need to enhance the accurate detection of PD in its early stage. The current paper developed a novel approach by integrating Least Squares Support Vector Regression (LS-SVR) and Fuzzy Clustering for Unified Parkinson’s Disease Rating Scale (UPDRS) diagnosis. This paper used feature selection and Principal Component Analysis (PCA) to overcome the multicollinearity issues in data. This paper used a large medical dataset including Motor- and Total-UPDRS to demonstrate how the proposed method can improve prediction performance via extensive evaluations and comparisons with existing methods. Compared to other prediction methods, the experimental results demonstrate that the proposed method provided the best accuracy for Total-UPDRS (Root Mean Squared Error = 0.7348; R2 = 0.9169) and Motor-UPDRS (Root Mean Squared Error = 0.8321; R2 = 0.8756) predictions.
ISSN:0208-5216
DOI:10.1016/j.bbe.2024.08.009