Loading…

p21WAF1/CIP1 deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

► p21−/− HCT116 cells exhibited an increase in mitochondrial mass. ► The expression levels of PGC-1α and AMPK were upregulated in p21−/− HCT116 cells. ► The proliferation of p21−/− HCT116 cells in galactose medium was significantly impaired. ► p21 may play a role in maintaining proper mitochondrial...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2013-01, Vol.430 (2), p.653-658
Main Authors: Kim, Ae Jeong, Jee, Hye Jin, Song, Naree, Kim, Minjee, Jeong, Seon-Young, Yun, Jeanho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► p21−/− HCT116 cells exhibited an increase in mitochondrial mass. ► The expression levels of PGC-1α and AMPK were upregulated in p21−/− HCT116 cells. ► The proliferation of p21−/− HCT116 cells in galactose medium was significantly impaired. ► p21 may play a role in maintaining proper mitochondrial mass and respiratory function. p21WAF1/CIP1 is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21−/− HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53−/− cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21−/− cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21−/− cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21−/− cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2012.11.096