Loading…

Toxic effects of cobalt in primary cultures of mouse astrocytes

Cobalt is suspected to cause memory deficit in humans and was reported to induce neurotoxicity in animal models. We have studied the effects of cobalt in primary cultures of mouse astrocytes. CoCl 2 (0.2–0.8 mM) caused dose-dependent ATP depletion, apoptosis (cell shrinkage, phosphatidylserine exter...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical pharmacology 2007-03, Vol.73 (5), p.694-708
Main Authors: Karovic, Olga, Tonazzini, Ilaria, Rebola, Nelson, Edström, Erik, Lövdahl, Cecilia, Fredholm, Bertil B., Daré, Elisabetta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cobalt is suspected to cause memory deficit in humans and was reported to induce neurotoxicity in animal models. We have studied the effects of cobalt in primary cultures of mouse astrocytes. CoCl 2 (0.2–0.8 mM) caused dose-dependent ATP depletion, apoptosis (cell shrinkage, phosphatidylserine externalization and chromatin rearrangements) and secondary necrosis. The mitochondria appeared to be a main target of cobalt toxicity, as shown by the loss of mitochondrial membrane potential (Δ Ψ m) and release from the mitochondria of apoptogenic factors, e.g. apoptosis inducing factor (AIF). Pre-treatment with bongkrekic acid reduced ATP depletion, implicating the involvement of the mitochondrial permeability transition (MPT) pore. Cobalt increased the generation of oxygen radicals, but antioxidants did not prevent toxicity. There was also an impaired response to ATP stimulation, evaluated as a lower raise in intracellular calcium. Similarly to hypoxia and dymethyloxallyl glycine (DMOG), cobalt triggered stabilization of the α-subunit of hypoxia-inducible factor HIF-1 (HIF-1α). This early event was followed by an increased expression of HIF-1 regulated genes, e.g. stress protein HO-1, pro-apoptotic factor Nip3 and iNOS. Although all of the three stimuli activated the HIF-1α pathway and decreased ATP levels, the downstream effects were different. DMOG only inhibited cell proliferation, whereas the other two conditions caused cell death by apoptosis and necrosis. This points to cobalt and hypoxia not only inducing HIF-1α regulated genes but also affecting similarly other cellular functions, including metabolism.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2006.11.008