Loading…

Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies

To develop the environmental antibacterial membrane, the physical attachments of poly (hexamethylene biguanide) hydrochloride (PHMB) on the cellulose acetate (CA) and regenerated cellulose (RC) electrospun nanofiber membranes were employed. The immobilization of PHMB increased the antibacterial effi...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical engineering journal 2024-05, Vol.205, p.109256, Article 109256
Main Authors: Thi My Huong, Dinh, Wang, Chi-Yun, Chen, Pin-Yi, Ooi, Chien Wei, Thew, Xue Er Crystal, Liu, Bing-Lan, Chiu, Chen-Yaw, Tsai, Shen-Long, Chen, Kuei-Hsiang, Chang, Yu-Kaung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-f407c7d6f405d5e1f185901331ce34f3e64c78978138064c1972839273ca2fe73
container_end_page
container_issue
container_start_page 109256
container_title Biochemical engineering journal
container_volume 205
creator Thi My Huong, Dinh
Wang, Chi-Yun
Chen, Pin-Yi
Ooi, Chien Wei
Thew, Xue Er Crystal
Liu, Bing-Lan
Chiu, Chen-Yaw
Tsai, Shen-Long
Chen, Kuei-Hsiang
Chang, Yu-Kaung
description To develop the environmental antibacterial membrane, the physical attachments of poly (hexamethylene biguanide) hydrochloride (PHMB) on the cellulose acetate (CA) and regenerated cellulose (RC) electrospun nanofiber membranes were employed. The immobilization of PHMB increased the antibacterial efficacy (AE, %) of nanofiber membranes from 65.67% to approximately 86.13% for CA-PHMB and from 35.09% to approximately 100% for RC-PHMB. The results of the chemical and physical characteristics indicate that the degree of deacetylation of CA nanofiber, the surface charge of the nanofiber, and the density of PHMB immobilized onto the nanofiber primarily affect the antibacterial efficacy. The use of mathematical models, such as the Temkin equilibrium model for PHMB immobilization and the Monod-type model for the relationship between antibacterial activity and immobilization density of PHMB provides a deeper understanding of the interactions and kinetics involved. The rapid achievement of ∼100% AE after only 10 min of contact with Escherichia coli (E. coli) is a notable finding, indicating the quick and efficient antibacterial action of RC-PHMB nanofiber membranes. Furthermore, maintaining approximately 100% AE after 20 days of storage underscores the long-term stability of PHMB immobilized on RC nanofiber membranes. The findings suggest that RC-PHMB holds great promise as an antibacterial material for biomedical applications, food packaging industries, and filtration or treatment of water. [Display omitted] •Novel PHMB-modified RC nanofiber membrane was developed.•Degree of CA hydrolysis significantly influenced the antibacterial efficacy.•Antibacterial efficacy approached 100% against E. coli in 10 min.•CA/RC-PHMB membranes are engineered to release antibacterial agents gradually and to provide sustainability against microbial growth.
doi_str_mv 10.1016/j.bej.2024.109256
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_bej_2024_109256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369703X24000433</els_id><sourcerecordid>S1369703X24000433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f407c7d6f405d5e1f185901331ce34f3e64c78978138064c1972839273ca2fe73</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4souK4-gLcc9dA1adqmxZMs_llY8KKwt5CmEzelTZYkK1vfw_c1SwVvnuY3w3zD8CXJNcELgkl51y0a6BYZzvLY11lRniQzUjGaZnWxOY2ZlnXKMN2cJxfedxjjkjI2S75Xw2Ab3esvEbQ1yCq0s_14s4WDGCBsxx4MoEZ_7IXRLdyiYJGEvt_31gMSEoIIkCJh2r9x2ggPLTLCWKUbcGiAoXHCgEfKurgbdCNkAKdFP5FjsMEetEQ-7FsN_jI5U6L3cPVb58n70-Pb8iVdvz6vlg_rVGZ5HVKVYyZZW8ZatAUQRaqixoRSIoHmikKZS1bVrCK0wjGTmmUVrTNGpcgUMDpPyHRXOuu9A8V3Tg_CjZxgfvTKOx698qNXPnmNzP3EQHzsU4PjXmowElrtQAbeWv0P_QOywIPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Thi My Huong, Dinh ; Wang, Chi-Yun ; Chen, Pin-Yi ; Ooi, Chien Wei ; Thew, Xue Er Crystal ; Liu, Bing-Lan ; Chiu, Chen-Yaw ; Tsai, Shen-Long ; Chen, Kuei-Hsiang ; Chang, Yu-Kaung</creator><creatorcontrib>Thi My Huong, Dinh ; Wang, Chi-Yun ; Chen, Pin-Yi ; Ooi, Chien Wei ; Thew, Xue Er Crystal ; Liu, Bing-Lan ; Chiu, Chen-Yaw ; Tsai, Shen-Long ; Chen, Kuei-Hsiang ; Chang, Yu-Kaung</creatorcontrib><description>To develop the environmental antibacterial membrane, the physical attachments of poly (hexamethylene biguanide) hydrochloride (PHMB) on the cellulose acetate (CA) and regenerated cellulose (RC) electrospun nanofiber membranes were employed. The immobilization of PHMB increased the antibacterial efficacy (AE, %) of nanofiber membranes from 65.67% to approximately 86.13% for CA-PHMB and from 35.09% to approximately 100% for RC-PHMB. The results of the chemical and physical characteristics indicate that the degree of deacetylation of CA nanofiber, the surface charge of the nanofiber, and the density of PHMB immobilized onto the nanofiber primarily affect the antibacterial efficacy. The use of mathematical models, such as the Temkin equilibrium model for PHMB immobilization and the Monod-type model for the relationship between antibacterial activity and immobilization density of PHMB provides a deeper understanding of the interactions and kinetics involved. The rapid achievement of ∼100% AE after only 10 min of contact with Escherichia coli (E. coli) is a notable finding, indicating the quick and efficient antibacterial action of RC-PHMB nanofiber membranes. Furthermore, maintaining approximately 100% AE after 20 days of storage underscores the long-term stability of PHMB immobilized on RC nanofiber membranes. The findings suggest that RC-PHMB holds great promise as an antibacterial material for biomedical applications, food packaging industries, and filtration or treatment of water. [Display omitted] •Novel PHMB-modified RC nanofiber membrane was developed.•Degree of CA hydrolysis significantly influenced the antibacterial efficacy.•Antibacterial efficacy approached 100% against E. coli in 10 min.•CA/RC-PHMB membranes are engineered to release antibacterial agents gradually and to provide sustainability against microbial growth.</description><identifier>ISSN: 1369-703X</identifier><identifier>EISSN: 1873-295X</identifier><identifier>DOI: 10.1016/j.bej.2024.109256</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cellulose ; Cellulose acetate ; Escherichia coli ; Nanofiber membrane ; Poly(hexamethylene biguanide)</subject><ispartof>Biochemical engineering journal, 2024-05, Vol.205, p.109256, Article 109256</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-f407c7d6f405d5e1f185901331ce34f3e64c78978138064c1972839273ca2fe73</cites><orcidid>0000-0002-3896-4716 ; 0000-0002-0627-6476 ; 0000-0003-0379-9295 ; 0000-0002-4948-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thi My Huong, Dinh</creatorcontrib><creatorcontrib>Wang, Chi-Yun</creatorcontrib><creatorcontrib>Chen, Pin-Yi</creatorcontrib><creatorcontrib>Ooi, Chien Wei</creatorcontrib><creatorcontrib>Thew, Xue Er Crystal</creatorcontrib><creatorcontrib>Liu, Bing-Lan</creatorcontrib><creatorcontrib>Chiu, Chen-Yaw</creatorcontrib><creatorcontrib>Tsai, Shen-Long</creatorcontrib><creatorcontrib>Chen, Kuei-Hsiang</creatorcontrib><creatorcontrib>Chang, Yu-Kaung</creatorcontrib><title>Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies</title><title>Biochemical engineering journal</title><description>To develop the environmental antibacterial membrane, the physical attachments of poly (hexamethylene biguanide) hydrochloride (PHMB) on the cellulose acetate (CA) and regenerated cellulose (RC) electrospun nanofiber membranes were employed. The immobilization of PHMB increased the antibacterial efficacy (AE, %) of nanofiber membranes from 65.67% to approximately 86.13% for CA-PHMB and from 35.09% to approximately 100% for RC-PHMB. The results of the chemical and physical characteristics indicate that the degree of deacetylation of CA nanofiber, the surface charge of the nanofiber, and the density of PHMB immobilized onto the nanofiber primarily affect the antibacterial efficacy. The use of mathematical models, such as the Temkin equilibrium model for PHMB immobilization and the Monod-type model for the relationship between antibacterial activity and immobilization density of PHMB provides a deeper understanding of the interactions and kinetics involved. The rapid achievement of ∼100% AE after only 10 min of contact with Escherichia coli (E. coli) is a notable finding, indicating the quick and efficient antibacterial action of RC-PHMB nanofiber membranes. Furthermore, maintaining approximately 100% AE after 20 days of storage underscores the long-term stability of PHMB immobilized on RC nanofiber membranes. The findings suggest that RC-PHMB holds great promise as an antibacterial material for biomedical applications, food packaging industries, and filtration or treatment of water. [Display omitted] •Novel PHMB-modified RC nanofiber membrane was developed.•Degree of CA hydrolysis significantly influenced the antibacterial efficacy.•Antibacterial efficacy approached 100% against E. coli in 10 min.•CA/RC-PHMB membranes are engineered to release antibacterial agents gradually and to provide sustainability against microbial growth.</description><subject>Cellulose</subject><subject>Cellulose acetate</subject><subject>Escherichia coli</subject><subject>Nanofiber membrane</subject><subject>Poly(hexamethylene biguanide)</subject><issn>1369-703X</issn><issn>1873-295X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4souK4-gLcc9dA1adqmxZMs_llY8KKwt5CmEzelTZYkK1vfw_c1SwVvnuY3w3zD8CXJNcELgkl51y0a6BYZzvLY11lRniQzUjGaZnWxOY2ZlnXKMN2cJxfedxjjkjI2S75Xw2Ab3esvEbQ1yCq0s_14s4WDGCBsxx4MoEZ_7IXRLdyiYJGEvt_31gMSEoIIkCJh2r9x2ggPLTLCWKUbcGiAoXHCgEfKurgbdCNkAKdFP5FjsMEetEQ-7FsN_jI5U6L3cPVb58n70-Pb8iVdvz6vlg_rVGZ5HVKVYyZZW8ZatAUQRaqixoRSIoHmikKZS1bVrCK0wjGTmmUVrTNGpcgUMDpPyHRXOuu9A8V3Tg_CjZxgfvTKOx698qNXPnmNzP3EQHzsU4PjXmowElrtQAbeWv0P_QOywIPS</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Thi My Huong, Dinh</creator><creator>Wang, Chi-Yun</creator><creator>Chen, Pin-Yi</creator><creator>Ooi, Chien Wei</creator><creator>Thew, Xue Er Crystal</creator><creator>Liu, Bing-Lan</creator><creator>Chiu, Chen-Yaw</creator><creator>Tsai, Shen-Long</creator><creator>Chen, Kuei-Hsiang</creator><creator>Chang, Yu-Kaung</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3896-4716</orcidid><orcidid>https://orcid.org/0000-0002-0627-6476</orcidid><orcidid>https://orcid.org/0000-0003-0379-9295</orcidid><orcidid>https://orcid.org/0000-0002-4948-4400</orcidid></search><sort><creationdate>202405</creationdate><title>Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies</title><author>Thi My Huong, Dinh ; Wang, Chi-Yun ; Chen, Pin-Yi ; Ooi, Chien Wei ; Thew, Xue Er Crystal ; Liu, Bing-Lan ; Chiu, Chen-Yaw ; Tsai, Shen-Long ; Chen, Kuei-Hsiang ; Chang, Yu-Kaung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f407c7d6f405d5e1f185901331ce34f3e64c78978138064c1972839273ca2fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cellulose</topic><topic>Cellulose acetate</topic><topic>Escherichia coli</topic><topic>Nanofiber membrane</topic><topic>Poly(hexamethylene biguanide)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thi My Huong, Dinh</creatorcontrib><creatorcontrib>Wang, Chi-Yun</creatorcontrib><creatorcontrib>Chen, Pin-Yi</creatorcontrib><creatorcontrib>Ooi, Chien Wei</creatorcontrib><creatorcontrib>Thew, Xue Er Crystal</creatorcontrib><creatorcontrib>Liu, Bing-Lan</creatorcontrib><creatorcontrib>Chiu, Chen-Yaw</creatorcontrib><creatorcontrib>Tsai, Shen-Long</creatorcontrib><creatorcontrib>Chen, Kuei-Hsiang</creatorcontrib><creatorcontrib>Chang, Yu-Kaung</creatorcontrib><collection>CrossRef</collection><jtitle>Biochemical engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thi My Huong, Dinh</au><au>Wang, Chi-Yun</au><au>Chen, Pin-Yi</au><au>Ooi, Chien Wei</au><au>Thew, Xue Er Crystal</au><au>Liu, Bing-Lan</au><au>Chiu, Chen-Yaw</au><au>Tsai, Shen-Long</au><au>Chen, Kuei-Hsiang</au><au>Chang, Yu-Kaung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies</atitle><jtitle>Biochemical engineering journal</jtitle><date>2024-05</date><risdate>2024</risdate><volume>205</volume><spage>109256</spage><pages>109256-</pages><artnum>109256</artnum><issn>1369-703X</issn><eissn>1873-295X</eissn><abstract>To develop the environmental antibacterial membrane, the physical attachments of poly (hexamethylene biguanide) hydrochloride (PHMB) on the cellulose acetate (CA) and regenerated cellulose (RC) electrospun nanofiber membranes were employed. The immobilization of PHMB increased the antibacterial efficacy (AE, %) of nanofiber membranes from 65.67% to approximately 86.13% for CA-PHMB and from 35.09% to approximately 100% for RC-PHMB. The results of the chemical and physical characteristics indicate that the degree of deacetylation of CA nanofiber, the surface charge of the nanofiber, and the density of PHMB immobilized onto the nanofiber primarily affect the antibacterial efficacy. The use of mathematical models, such as the Temkin equilibrium model for PHMB immobilization and the Monod-type model for the relationship between antibacterial activity and immobilization density of PHMB provides a deeper understanding of the interactions and kinetics involved. The rapid achievement of ∼100% AE after only 10 min of contact with Escherichia coli (E. coli) is a notable finding, indicating the quick and efficient antibacterial action of RC-PHMB nanofiber membranes. Furthermore, maintaining approximately 100% AE after 20 days of storage underscores the long-term stability of PHMB immobilized on RC nanofiber membranes. The findings suggest that RC-PHMB holds great promise as an antibacterial material for biomedical applications, food packaging industries, and filtration or treatment of water. [Display omitted] •Novel PHMB-modified RC nanofiber membrane was developed.•Degree of CA hydrolysis significantly influenced the antibacterial efficacy.•Antibacterial efficacy approached 100% against E. coli in 10 min.•CA/RC-PHMB membranes are engineered to release antibacterial agents gradually and to provide sustainability against microbial growth.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bej.2024.109256</doi><orcidid>https://orcid.org/0000-0002-3896-4716</orcidid><orcidid>https://orcid.org/0000-0002-0627-6476</orcidid><orcidid>https://orcid.org/0000-0003-0379-9295</orcidid><orcidid>https://orcid.org/0000-0002-4948-4400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1369-703X
ispartof Biochemical engineering journal, 2024-05, Vol.205, p.109256, Article 109256
issn 1369-703X
1873-295X
language eng
recordid cdi_crossref_primary_10_1016_j_bej_2024_109256
source ScienceDirect Freedom Collection 2022-2024
subjects Cellulose
Cellulose acetate
Escherichia coli
Nanofiber membrane
Poly(hexamethylene biguanide)
title Immobilization of poly(hexamethylene biguanide) to cellulose acetate- and cellulose-based nanofiber membranes for antibacterial and cytotoxic studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20poly(hexamethylene%20biguanide)%20to%20cellulose%20acetate-%20and%20cellulose-based%20nanofiber%20membranes%20for%20antibacterial%20and%20cytotoxic%20studies&rft.jtitle=Biochemical%20engineering%20journal&rft.au=Thi%20My%20Huong,%20Dinh&rft.date=2024-05&rft.volume=205&rft.spage=109256&rft.pages=109256-&rft.artnum=109256&rft.issn=1369-703X&rft.eissn=1873-295X&rft_id=info:doi/10.1016/j.bej.2024.109256&rft_dat=%3Celsevier_cross%3ES1369703X24000433%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-f407c7d6f405d5e1f185901331ce34f3e64c78978138064c1972839273ca2fe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true