Loading…
High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation
Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product s...
Saved in:
Published in: | Biochemical engineering journal 2024-07, Vol.207, p.109330, Article 109330 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3 |
container_end_page | |
container_issue | |
container_start_page | 109330 |
container_title | Biochemical engineering journal |
container_volume | 207 |
creator | Puiman, Lars Almeida Benalcázar, Eduardo Picioreanu, Cristian Noorman, Henk J. Haringa, Cees |
description | Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor.
[Display omitted]
•Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments. |
doi_str_mv | 10.1016/j.bej.2024.109330 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_bej_2024_109330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369703X24001177</els_id><sourcerecordid>S1369703X24001177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-QIp_kjgRK1QBRULqBqTuLNeetI6SuLKdIq7CaXFT1qzmR-97mnkI3VOyoISWD-1iC-2CEZanueacXKAZrQTPWF1sLlPPyzoThG-u0U0ILSGk5ELM0M_K7vaZh-C6MVo3YO36wxjV1B88GKtjwHGvIu7cFzY2JOURDF6uk3TQMEQ_iQNWw7TdeWVsWoeEu95FwJDwwXWn2Yx6ck52djBjiN6qLgtadYB3KuAGfJ_YyfEWXTWqC3D3V-fo8-X5Y7nK3tevb8un90yzmsVMm5xxTZu6hK0o8rxWNSuaArQoSwJECdHkVFeqKs3WECKU5pUhlBsAXeYM-BzRs6_2LgQPjTx42yv_LSmRp3BlK1O48hSuPIebmMczA-mwowUvg05P65SXBx2lcfYf-hfgTIeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</creator><creatorcontrib>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</creatorcontrib><description>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor.
[Display omitted]
•Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</description><identifier>ISSN: 1369-703X</identifier><identifier>EISSN: 1873-295X</identifier><identifier>DOI: 10.1016/j.bej.2024.109330</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CFD ; Concentration gradients ; Gas fermentation ; Industrial ; Lifelines ; Metabolic modelling</subject><ispartof>Biochemical engineering journal, 2024-07, Vol.207, p.109330, Article 109330</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</cites><orcidid>0000-0003-4450-3630 ; 0000-0003-0310-1045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Puiman, Lars</creatorcontrib><creatorcontrib>Almeida Benalcázar, Eduardo</creatorcontrib><creatorcontrib>Picioreanu, Cristian</creatorcontrib><creatorcontrib>Noorman, Henk J.</creatorcontrib><creatorcontrib>Haringa, Cees</creatorcontrib><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><title>Biochemical engineering journal</title><description>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor.
[Display omitted]
•Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</description><subject>CFD</subject><subject>Concentration gradients</subject><subject>Gas fermentation</subject><subject>Industrial</subject><subject>Lifelines</subject><subject>Metabolic modelling</subject><issn>1369-703X</issn><issn>1873-295X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-QIp_kjgRK1QBRULqBqTuLNeetI6SuLKdIq7CaXFT1qzmR-97mnkI3VOyoISWD-1iC-2CEZanueacXKAZrQTPWF1sLlPPyzoThG-u0U0ILSGk5ELM0M_K7vaZh-C6MVo3YO36wxjV1B88GKtjwHGvIu7cFzY2JOURDF6uk3TQMEQ_iQNWw7TdeWVsWoeEu95FwJDwwXWn2Yx6ck52djBjiN6qLgtadYB3KuAGfJ_YyfEWXTWqC3D3V-fo8-X5Y7nK3tevb8un90yzmsVMm5xxTZu6hK0o8rxWNSuaArQoSwJECdHkVFeqKs3WECKU5pUhlBsAXeYM-BzRs6_2LgQPjTx42yv_LSmRp3BlK1O48hSuPIebmMczA-mwowUvg05P65SXBx2lcfYf-hfgTIeE</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Puiman, Lars</creator><creator>Almeida Benalcázar, Eduardo</creator><creator>Picioreanu, Cristian</creator><creator>Noorman, Henk J.</creator><creator>Haringa, Cees</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4450-3630</orcidid><orcidid>https://orcid.org/0000-0003-0310-1045</orcidid></search><sort><creationdate>202407</creationdate><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><author>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CFD</topic><topic>Concentration gradients</topic><topic>Gas fermentation</topic><topic>Industrial</topic><topic>Lifelines</topic><topic>Metabolic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puiman, Lars</creatorcontrib><creatorcontrib>Almeida Benalcázar, Eduardo</creatorcontrib><creatorcontrib>Picioreanu, Cristian</creatorcontrib><creatorcontrib>Noorman, Henk J.</creatorcontrib><creatorcontrib>Haringa, Cees</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Biochemical engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puiman, Lars</au><au>Almeida Benalcázar, Eduardo</au><au>Picioreanu, Cristian</au><au>Noorman, Henk J.</au><au>Haringa, Cees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</atitle><jtitle>Biochemical engineering journal</jtitle><date>2024-07</date><risdate>2024</risdate><volume>207</volume><spage>109330</spage><pages>109330-</pages><artnum>109330</artnum><issn>1369-703X</issn><eissn>1873-295X</eissn><abstract>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor.
[Display omitted]
•Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bej.2024.109330</doi><orcidid>https://orcid.org/0000-0003-4450-3630</orcidid><orcidid>https://orcid.org/0000-0003-0310-1045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-703X |
ispartof | Biochemical engineering journal, 2024-07, Vol.207, p.109330, Article 109330 |
issn | 1369-703X 1873-295X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_bej_2024_109330 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | CFD Concentration gradients Gas fermentation Industrial Lifelines Metabolic modelling |
title | High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20computation%20predicts%20that%20low%20dissolved%20CO%20concentrations%20and%20CO%20gradients%20promote%20ethanol%20production%20at%20industrial-scale%20gas%20fermentation&rft.jtitle=Biochemical%20engineering%20journal&rft.au=Puiman,%20Lars&rft.date=2024-07&rft.volume=207&rft.spage=109330&rft.pages=109330-&rft.artnum=109330&rft.issn=1369-703X&rft.eissn=1873-295X&rft_id=info:doi/10.1016/j.bej.2024.109330&rft_dat=%3Celsevier_cross%3ES1369703X24001177%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |