Loading…

High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation

Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product s...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical engineering journal 2024-07, Vol.207, p.109330, Article 109330
Main Authors: Puiman, Lars, Almeida Benalcázar, Eduardo, Picioreanu, Cristian, Noorman, Henk J., Haringa, Cees
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3
container_end_page
container_issue
container_start_page 109330
container_title Biochemical engineering journal
container_volume 207
creator Puiman, Lars
Almeida Benalcázar, Eduardo
Picioreanu, Cristian
Noorman, Henk J.
Haringa, Cees
description Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor. [Display omitted] •Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.
doi_str_mv 10.1016/j.bej.2024.109330
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_bej_2024_109330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369703X24001177</els_id><sourcerecordid>S1369703X24001177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-QIp_kjgRK1QBRULqBqTuLNeetI6SuLKdIq7CaXFT1qzmR-97mnkI3VOyoISWD-1iC-2CEZanueacXKAZrQTPWF1sLlPPyzoThG-u0U0ILSGk5ELM0M_K7vaZh-C6MVo3YO36wxjV1B88GKtjwHGvIu7cFzY2JOURDF6uk3TQMEQ_iQNWw7TdeWVsWoeEu95FwJDwwXWn2Yx6ck52djBjiN6qLgtadYB3KuAGfJ_YyfEWXTWqC3D3V-fo8-X5Y7nK3tevb8un90yzmsVMm5xxTZu6hK0o8rxWNSuaArQoSwJECdHkVFeqKs3WECKU5pUhlBsAXeYM-BzRs6_2LgQPjTx42yv_LSmRp3BlK1O48hSuPIebmMczA-mwowUvg05P65SXBx2lcfYf-hfgTIeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</creator><creatorcontrib>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</creatorcontrib><description>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor. [Display omitted] •Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</description><identifier>ISSN: 1369-703X</identifier><identifier>EISSN: 1873-295X</identifier><identifier>DOI: 10.1016/j.bej.2024.109330</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CFD ; Concentration gradients ; Gas fermentation ; Industrial ; Lifelines ; Metabolic modelling</subject><ispartof>Biochemical engineering journal, 2024-07, Vol.207, p.109330, Article 109330</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</cites><orcidid>0000-0003-4450-3630 ; 0000-0003-0310-1045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Puiman, Lars</creatorcontrib><creatorcontrib>Almeida Benalcázar, Eduardo</creatorcontrib><creatorcontrib>Picioreanu, Cristian</creatorcontrib><creatorcontrib>Noorman, Henk J.</creatorcontrib><creatorcontrib>Haringa, Cees</creatorcontrib><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><title>Biochemical engineering journal</title><description>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor. [Display omitted] •Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</description><subject>CFD</subject><subject>Concentration gradients</subject><subject>Gas fermentation</subject><subject>Industrial</subject><subject>Lifelines</subject><subject>Metabolic modelling</subject><issn>1369-703X</issn><issn>1873-295X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-QIp_kjgRK1QBRULqBqTuLNeetI6SuLKdIq7CaXFT1qzmR-97mnkI3VOyoISWD-1iC-2CEZanueacXKAZrQTPWF1sLlPPyzoThG-u0U0ILSGk5ELM0M_K7vaZh-C6MVo3YO36wxjV1B88GKtjwHGvIu7cFzY2JOURDF6uk3TQMEQ_iQNWw7TdeWVsWoeEu95FwJDwwXWn2Yx6ck52djBjiN6qLgtadYB3KuAGfJ_YyfEWXTWqC3D3V-fo8-X5Y7nK3tevb8un90yzmsVMm5xxTZu6hK0o8rxWNSuaArQoSwJECdHkVFeqKs3WECKU5pUhlBsAXeYM-BzRs6_2LgQPjTx42yv_LSmRp3BlK1O48hSuPIebmMczA-mwowUvg05P65SXBx2lcfYf-hfgTIeE</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Puiman, Lars</creator><creator>Almeida Benalcázar, Eduardo</creator><creator>Picioreanu, Cristian</creator><creator>Noorman, Henk J.</creator><creator>Haringa, Cees</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4450-3630</orcidid><orcidid>https://orcid.org/0000-0003-0310-1045</orcidid></search><sort><creationdate>202407</creationdate><title>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</title><author>Puiman, Lars ; Almeida Benalcázar, Eduardo ; Picioreanu, Cristian ; Noorman, Henk J. ; Haringa, Cees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CFD</topic><topic>Concentration gradients</topic><topic>Gas fermentation</topic><topic>Industrial</topic><topic>Lifelines</topic><topic>Metabolic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puiman, Lars</creatorcontrib><creatorcontrib>Almeida Benalcázar, Eduardo</creatorcontrib><creatorcontrib>Picioreanu, Cristian</creatorcontrib><creatorcontrib>Noorman, Henk J.</creatorcontrib><creatorcontrib>Haringa, Cees</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Biochemical engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puiman, Lars</au><au>Almeida Benalcázar, Eduardo</au><au>Picioreanu, Cristian</au><au>Noorman, Henk J.</au><au>Haringa, Cees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation</atitle><jtitle>Biochemical engineering journal</jtitle><date>2024-07</date><risdate>2024</risdate><volume>207</volume><spage>109330</spage><pages>109330-</pages><artnum>109330</artnum><issn>1369-703X</issn><eissn>1873-295X</eissn><abstract>Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of metabolic regimes. Our model results, together with literature experimental data and a model with constant dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensified ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic understanding of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale reactor. [Display omitted] •Fully coupled CFD model with metabolic dynamics for industrial-scale gas fermentor.•Low CO concentrations relate to ethanol while high cL,CO relate to acetate production.•The dissolved CO concentration is a major determinant of the product spectrum.•Large-scale dissolved CO concentration gradient enhances ethanol production by ∼25%.•Enhanced mechanistic understanding of gas fermentation, confirmed with experiments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bej.2024.109330</doi><orcidid>https://orcid.org/0000-0003-4450-3630</orcidid><orcidid>https://orcid.org/0000-0003-0310-1045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-703X
ispartof Biochemical engineering journal, 2024-07, Vol.207, p.109330, Article 109330
issn 1369-703X
1873-295X
language eng
recordid cdi_crossref_primary_10_1016_j_bej_2024_109330
source ScienceDirect Freedom Collection 2022-2024
subjects CFD
Concentration gradients
Gas fermentation
Industrial
Lifelines
Metabolic modelling
title High-resolution computation predicts that low dissolved CO concentrations and CO gradients promote ethanol production at industrial-scale gas fermentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20computation%20predicts%20that%20low%20dissolved%20CO%20concentrations%20and%20CO%20gradients%20promote%20ethanol%20production%20at%20industrial-scale%20gas%20fermentation&rft.jtitle=Biochemical%20engineering%20journal&rft.au=Puiman,%20Lars&rft.date=2024-07&rft.volume=207&rft.spage=109330&rft.pages=109330-&rft.artnum=109330&rft.issn=1369-703X&rft.eissn=1873-295X&rft_id=info:doi/10.1016/j.bej.2024.109330&rft_dat=%3Celsevier_cross%3ES1369703X24001177%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-cd423c1f96eb75449a925f5ec7660e0a77f41c8a86dbd007ac38d013deec642e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true