Loading…

Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy

Redox homeostasis inside malignant cells is a defense mechanism against the reactive oxygen species (ROS)-induced therapy means, but little importance has been paid to this innate barrier. The present study intends to make cancer cells more sensitive to the ROS-induced therapy by disturbing cellular...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2019-12, Vol.224, p.119500, Article 119500
Main Authors: Cheng, Qian, Yu, Wuyang, Ye, Jingjie, Liu, Miaodeng, Liu, Wenlong, Zhang, Chi, Zhang, Cheng, Feng, Jun, Zhang, Xian-Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redox homeostasis inside malignant cells is a defense mechanism against the reactive oxygen species (ROS)-induced therapy means, but little importance has been paid to this innate barrier. The present study intends to make cancer cells more sensitive to the ROS-induced therapy by disturbing cellular redox homeostasis. To verify this concept, a porous metal-organic framework (MOF) serves not only as the photodynamic therapy (PDT) agent but also as the carrier to transport alkaloid piperlongumine (PL), a thioredoxin reductase (TrxR) inhibitor used to disturb cellular redox homeostasis. The PL-loaded MOF was further coated with cancer cell membranes to gain homologous tumor-targeting capability. Inside tumor cells, the released PL can effectively block the TrxR-mediated ROS elimination pathway. The resultant data show that compared to traditional PDT alone, the combination of PDT and TrxR inhibition causes profound promotions in cellular ROS level by about 1.6 times, in cytotoxicity by about 2 times, and in cellular apoptosis/necrosis rate by about 3 times. Consequently, this strategy based on the interference with cellular redox homeostasis has demonstrated high potency to improve the anticancer PDT performance, adumbrating a new way to boost the power of ROS-induced therapy.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2019.119500