Loading…

Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor

Nanobubbles, as a kind of new ultrasound contrast agent (UCAs), have shown promise to penetrate tumor vasculature to allow for targeted imaging. However, their inherent physical instability is an ongoing concern that could weaken their imaging ability with ultrasound. Gas vesicles (GVs), which are g...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2020-04, Vol.236, p.119803, Article 119803
Main Authors: Wang, Guohao, Song, Lin, Hou, Xuandi, Kala, Shashwati, Wong, Kin Fung, Tang, Liya, Dai, Yunlu, Sun, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanobubbles, as a kind of new ultrasound contrast agent (UCAs), have shown promise to penetrate tumor vasculature to allow for targeted imaging. However, their inherent physical instability is an ongoing concern that could weaken their imaging ability with ultrasound. Gas vesicles (GVs), which are genetically encoded, naturally stable nanostructures, have been developed as the first ultrasonic biomolecular reporters which showed strong contrast enhancement. However, further development of tumor imaging with GVs is limited by the quick clearance of GVs by the reticuloendothelial system (RES). Here, we developed PEGylated HA-GVs (PH-GVs) for in-tumor molecular ultrasound imaging by integrating polyethylene glycol (PEG) and hyaluronic acid (HA) in GV shells. PH-GVs were observed to accumulate around CD44-positive cells (SCC7) but not be internalized by macrophage cell line RAW 264.7. Green fluorescence from PH-GVs was found around cell nuclei in the tumor site after 6 h and the signal was sustained over 48 h following tail injection, demonstrating PH-GVs’ ability to escape the clearance from the RES and to penetrate tumor vasculature through enhanced permeability and retention (EPR) effects. Further, PH-GVs produced strong ultrasound contrast in the tumor site in vivo, with no obvious side-effects detected following intravenous injection. Thus, we demonstrate the potential of PH-GVs as novel, nanosized and targeted UCAs for efficient and specific molecular tumor imaging, paving the way for the application of GVs in precise and personalized medicine. [Display omitted]
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2020.119803