Loading…
Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy
Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and...
Saved in:
Published in: | Biomaterials 2021-10, Vol.277, p.121100, Article 121100 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03 |
container_end_page | |
container_issue | |
container_start_page | 121100 |
container_title | Biomaterials |
container_volume | 277 |
creator | Wang, Junrui Song, Weixiang Wang, Xingyue Xie, Zhuoyan Zhang, Wenli Jiang, Weixi Liu, Shuling Hou, Jingxin Zhong, Yixin Xu, Jie Ran, Haitao Guo, Dajing |
description | Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as “thermoferroptosis sensitization”. Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable. |
doi_str_mv | 10.1016/j.biomaterials.2021.121100 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_biomaterials_2021_121100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961221004567</els_id><sourcerecordid>34492584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYMoOv68ghT3HXPT1KbuxH8Q3Og6ZNKbMUPblCQj6GoWPoa-nE9ihqq4dHW5cM4993yEHAGdAoWT48V0Zl2nInqr2jBllMEUGAClG2QCohJ5WdNyk0wocJbXJ8B2yG4IC5p2ytk22Sk4r1kp-IS8PSw75_OArcmj8nOM2GSfq_f4hL5zBr13Q3TBhiTpg432VUXr-s_VR9apeY_R6qxXvWuSrsUYMuN81i3baDvXqDazSWX7eT5f2iZdjmPagNqa5FynqOFln2yZ1AQPvuceeby6fDi_ye_ur2_Pz-5yXQga80IBIK1SCSWEoQpBa1FgXXKoZlg0ynCBtZgJRM4UVEAZh4SA0bI2FdJij5yOd7V3IXg0cvDpQf8igco1WrmQf9HKNVo5ok3mw9E8LGcdNr_WH5ZJcDEKMFV4tuhl0BZ7jY31qKNsnP1Pzhdiw5ec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Junrui ; Song, Weixiang ; Wang, Xingyue ; Xie, Zhuoyan ; Zhang, Wenli ; Jiang, Weixi ; Liu, Shuling ; Hou, Jingxin ; Zhong, Yixin ; Xu, Jie ; Ran, Haitao ; Guo, Dajing</creator><creatorcontrib>Wang, Junrui ; Song, Weixiang ; Wang, Xingyue ; Xie, Zhuoyan ; Zhang, Wenli ; Jiang, Weixi ; Liu, Shuling ; Hou, Jingxin ; Zhong, Yixin ; Xu, Jie ; Ran, Haitao ; Guo, Dajing</creatorcontrib><description>Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as “thermoferroptosis sensitization”. Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121100</identifier><identifier>PMID: 34492584</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Cell Line, Tumor ; Ferroptosis ; Hyperthermia, Induced ; Magnetic fluid hyperthermia ; Magnetic nanodroplets ; Magnetic Phenomena ; Multimodal Imaging ; Nanomedicine ; Nanoparticles</subject><ispartof>Biomaterials, 2021-10, Vol.277, p.121100, Article 121100</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03</citedby><cites>FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03</cites><orcidid>0000-0001-8655-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34492584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Junrui</creatorcontrib><creatorcontrib>Song, Weixiang</creatorcontrib><creatorcontrib>Wang, Xingyue</creatorcontrib><creatorcontrib>Xie, Zhuoyan</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Jiang, Weixi</creatorcontrib><creatorcontrib>Liu, Shuling</creatorcontrib><creatorcontrib>Hou, Jingxin</creatorcontrib><creatorcontrib>Zhong, Yixin</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Ran, Haitao</creatorcontrib><creatorcontrib>Guo, Dajing</creatorcontrib><title>Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as “thermoferroptosis sensitization”. Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.</description><subject>Cell Line, Tumor</subject><subject>Ferroptosis</subject><subject>Hyperthermia, Induced</subject><subject>Magnetic fluid hyperthermia</subject><subject>Magnetic nanodroplets</subject><subject>Magnetic Phenomena</subject><subject>Multimodal Imaging</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAUhYMoOv68ghT3HXPT1KbuxH8Q3Og6ZNKbMUPblCQj6GoWPoa-nE9ihqq4dHW5cM4993yEHAGdAoWT48V0Zl2nInqr2jBllMEUGAClG2QCohJ5WdNyk0wocJbXJ8B2yG4IC5p2ytk22Sk4r1kp-IS8PSw75_OArcmj8nOM2GSfq_f4hL5zBr13Q3TBhiTpg432VUXr-s_VR9apeY_R6qxXvWuSrsUYMuN81i3baDvXqDazSWX7eT5f2iZdjmPagNqa5FynqOFln2yZ1AQPvuceeby6fDi_ye_ur2_Pz-5yXQga80IBIK1SCSWEoQpBa1FgXXKoZlg0ynCBtZgJRM4UVEAZh4SA0bI2FdJij5yOd7V3IXg0cvDpQf8igco1WrmQf9HKNVo5ok3mw9E8LGcdNr_WH5ZJcDEKMFV4tuhl0BZ7jY31qKNsnP1Pzhdiw5ec</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Wang, Junrui</creator><creator>Song, Weixiang</creator><creator>Wang, Xingyue</creator><creator>Xie, Zhuoyan</creator><creator>Zhang, Wenli</creator><creator>Jiang, Weixi</creator><creator>Liu, Shuling</creator><creator>Hou, Jingxin</creator><creator>Zhong, Yixin</creator><creator>Xu, Jie</creator><creator>Ran, Haitao</creator><creator>Guo, Dajing</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8655-6621</orcidid></search><sort><creationdate>202110</creationdate><title>Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy</title><author>Wang, Junrui ; Song, Weixiang ; Wang, Xingyue ; Xie, Zhuoyan ; Zhang, Wenli ; Jiang, Weixi ; Liu, Shuling ; Hou, Jingxin ; Zhong, Yixin ; Xu, Jie ; Ran, Haitao ; Guo, Dajing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell Line, Tumor</topic><topic>Ferroptosis</topic><topic>Hyperthermia, Induced</topic><topic>Magnetic fluid hyperthermia</topic><topic>Magnetic nanodroplets</topic><topic>Magnetic Phenomena</topic><topic>Multimodal Imaging</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junrui</creatorcontrib><creatorcontrib>Song, Weixiang</creatorcontrib><creatorcontrib>Wang, Xingyue</creatorcontrib><creatorcontrib>Xie, Zhuoyan</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Jiang, Weixi</creatorcontrib><creatorcontrib>Liu, Shuling</creatorcontrib><creatorcontrib>Hou, Jingxin</creatorcontrib><creatorcontrib>Zhong, Yixin</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Ran, Haitao</creatorcontrib><creatorcontrib>Guo, Dajing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junrui</au><au>Song, Weixiang</au><au>Wang, Xingyue</au><au>Xie, Zhuoyan</au><au>Zhang, Wenli</au><au>Jiang, Weixi</au><au>Liu, Shuling</au><au>Hou, Jingxin</au><au>Zhong, Yixin</au><au>Xu, Jie</au><au>Ran, Haitao</au><au>Guo, Dajing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2021-10</date><risdate>2021</risdate><volume>277</volume><spage>121100</spage><pages>121100-</pages><artnum>121100</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as “thermoferroptosis sensitization”. Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34492584</pmid><doi>10.1016/j.biomaterials.2021.121100</doi><orcidid>https://orcid.org/0000-0001-8655-6621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2021-10, Vol.277, p.121100, Article 121100 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_biomaterials_2021_121100 |
source | ScienceDirect Freedom Collection |
subjects | Cell Line, Tumor Ferroptosis Hyperthermia, Induced Magnetic fluid hyperthermia Magnetic nanodroplets Magnetic Phenomena Multimodal Imaging Nanomedicine Nanoparticles |
title | Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-self-targeted%20%E2%80%9Cthermoferroptosis-sensitization%E2%80%9D%20magnetic%20nanodroplets%20for%20multimodal%20imaging-guided%20tumor-specific%20therapy&rft.jtitle=Biomaterials&rft.au=Wang,%20Junrui&rft.date=2021-10&rft.volume=277&rft.spage=121100&rft.pages=121100-&rft.artnum=121100&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121100&rft_dat=%3Cpubmed_cross%3E34492584%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-3a11e07140a88f0ae1cc83e95417be3daf48e98b8ee42a17102411422059f7e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/34492584&rfr_iscdi=true |