Loading…

Tumor oxygenation nanoliposome synergistic hypoxia-inducible-factor-1 inhibitor enhanced Iodine-125 seed brachytherapy for esophageal cancer

Iodine-125 (125I) brachytherapy has become one of the most effective palliative treatment options for advanced esophageal cancer. However, resistance toward 125I brachytherapy caused by pre-existing tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) signaling pathway activation represents a signif...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2022-10, Vol.289, p.121801, Article 121801
Main Authors: Yao, Xijuan, Lu, Shuting, Feng, Cheng, Suo, Ruiyang, Li, Hang, Zhang, Yi, Chen, Qi, Lu, Jian, Wu, Bo, Guo, Jinhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iodine-125 (125I) brachytherapy has become one of the most effective palliative treatment options for advanced esophageal cancer. However, resistance toward 125I brachytherapy caused by pre-existing tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) signaling pathway activation represents a significant limitation in esophageal cancer treatment. To circumvent these problems, herein, we proposed an innovative strategy to alleviate radioresistance of brachytherapy by co-encapsulating catalase (CAT) and HIF-1 inhibitor-acriflavine (ACF) into the hydrophilic cavities of liposome, termed as “ACF-CAT@Lipo”. Under overexpressed H2O2 stimulation in the tumor region, the fabricated ACF-CAT@Lipo can generate an amount of O2 and alleviate tumor hypoxia in vitro and in vivo. Furthermore, cooperating with ACF, the expression of hypoxia-related protein (e.g. HIF-1α, VEGF, MMP-2) are obviously decreased. Importantly, the copious oxygenation and the significant inhibition expression of HIF-1α can further improve the radiosensitivity of 125I brachytherapy and finally realize the eradication of esophageal cancer in vivo. The oxygen enrichment and HIF-1 inhibition function of ACF-CAT@Lipo provides a new strategy to overcome the brachytherapy resistance of esophageal cancer therapy.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2022.121801