Loading…
Strong metal-support interaction of palladium carbide in PtPd/C catalysts for enhanced catalytic transfer hydrogenolysis of glycerol
Catalytic transfer hydrogenolysis of glycerol can give 1,2-propanediol under mild condition (200 °C) in the absence of external H2. Most existing studies have been focused on metallic catalysts for tandem H2 generation and hydrogenolysis. In this work, a series of bimetallic PtPd/C catalysts with Pd...
Saved in:
Published in: | Biomass & bioenergy 2022-08, Vol.163, p.106507, Article 106507 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Catalytic transfer hydrogenolysis of glycerol can give 1,2-propanediol under mild condition (200 °C) in the absence of external H2. Most existing studies have been focused on metallic catalysts for tandem H2 generation and hydrogenolysis. In this work, a series of bimetallic PtPd/C catalysts with PdCx as promoting role, were synthesized with different calcination temperatures (300–900 °C) and varied Pt/Pd molar ratio (Pd/Pt: 0.5–2.0), to investigate the structure-activity relationship over the in-situ transfer hydrogenation of glycerol. In particular, PtPd/C-900 catalysts showed the best performance (TOF: 37.6 h−1, 1,2-PDO selectivity: 45.3%). It is evidenced that varied metal particle sizes (2.6–7.0 nm) were obtained, and catalytic transfer hydrogenolysis of glycerol displayed size sensitivity over PtPd/C catalysts. Besides, strong metal-support interaction can promote the formation of palladium carbide (PdCx), thus changing the electronic structure of Pt atoms, and improving the activity of hydrogenation reaction and WGS + Reforming reaction. This study will provide insights for the structural design of catalyst for selective transfer hydrogenation of bio-polyols.
•Proposed and validated novel Pd carbide catalysts for transfer hydrogenolysis reactions.•Hydrodeoxygenation of glycerol in the absence of external H2 for reduced carbon footprint.•Structure-sensitivity analysis for H2 generation and hydrogenation reactions. |
---|---|
ISSN: | 0961-9534 1873-2909 |
DOI: | 10.1016/j.biombioe.2022.106507 |